J. Zhang, W. Y. Wang, G. Wang, C. Kai, Hua Song, Lu Wang
{"title":"Equilibrium, Kinetic and Thermodynamic Studies on Adsorptive Removal of H2S from Natural Gas by Amine Functionalisation of MCM-41","authors":"J. Zhang, W. Y. Wang, G. Wang, C. Kai, Hua Song, Lu Wang","doi":"10.3184/146867817X14806858831983","DOIUrl":null,"url":null,"abstract":"A model natural gas consisting of hydrogen sulfide, nitrogen and oxygen mixture was used to simulate materials to test the performance of an amine-modified MCM-41 adsorbent prepared by the impregnation method. The adsorbent was characterised by X-ray diffraction analysis, Brunauer–Emmett–Teller analysis, Fourier-transform infrared spectroscopy, transmission electron microscopy and scanning electron microscopy. The results showed that more molecules are able to penetrate the pores following modification, resulting in rapid structural collapse, thus lowering the diffraction intensity. Although the capacity of amine-modified MCM-41 decreased the physical adsorption, chemisorption increased significantly. (3-Aminopropyl)trimethoxysilane/MCM-41 was found to exhibit a good performance for H2S desulfurisation. At 45 °C the breakthrough time was 186 min, the saturated sulfur capacity was 134.38 mg g−1 and the degree of desulfurisation was 54.19%. The adsorption isotherm and kinetics were investigated and the relevant parameters were obtained. The results showed that the adsorption isotherm could be well fitted by the Langmuir model and the maximum adsorption capacities increased with increase of temperature. The adsorption kinetics could be represented by the Bangham model, which suggested that chemical reaction seemed significant in the rate-controlling adsorption step. The adsorption process was spontaneous and exothermic.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":"14 1","pages":"221 - 234"},"PeriodicalIF":2.1000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3184/146867817X14806858831983","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
A model natural gas consisting of hydrogen sulfide, nitrogen and oxygen mixture was used to simulate materials to test the performance of an amine-modified MCM-41 adsorbent prepared by the impregnation method. The adsorbent was characterised by X-ray diffraction analysis, Brunauer–Emmett–Teller analysis, Fourier-transform infrared spectroscopy, transmission electron microscopy and scanning electron microscopy. The results showed that more molecules are able to penetrate the pores following modification, resulting in rapid structural collapse, thus lowering the diffraction intensity. Although the capacity of amine-modified MCM-41 decreased the physical adsorption, chemisorption increased significantly. (3-Aminopropyl)trimethoxysilane/MCM-41 was found to exhibit a good performance for H2S desulfurisation. At 45 °C the breakthrough time was 186 min, the saturated sulfur capacity was 134.38 mg g−1 and the degree of desulfurisation was 54.19%. The adsorption isotherm and kinetics were investigated and the relevant parameters were obtained. The results showed that the adsorption isotherm could be well fitted by the Langmuir model and the maximum adsorption capacities increased with increase of temperature. The adsorption kinetics could be represented by the Bangham model, which suggested that chemical reaction seemed significant in the rate-controlling adsorption step. The adsorption process was spontaneous and exothermic.