P. Carrington, E. Delli, P. Hodgson, E. Repiso, A. Craig, A. Marshall, A. Krier
{"title":"Antimony based mid-infrared semiconductor materials and devices monolithically grown on silicon substrates","authors":"P. Carrington, E. Delli, P. Hodgson, E. Repiso, A. Craig, A. Marshall, A. Krier","doi":"10.1109/IPCON.2017.8116118","DOIUrl":null,"url":null,"abstract":"III-V semiconductor heterostructures grown on GaSb and InAs substrates are widely used to produce high performance optoelectronic devices operating in the technologically important mid-infrared spectral range. However, these substrates are expensive, only available in small sizes and have low thermal conductivity. Integration of III-Vs onto silicon substrates offers the opportunity to overcome these shortcomings and opens the possibility of new applications in lab-on-chip MIR photonic integrated circuits. However, the unusual III-V/Si interface and large lattice mismatch presents challenges to epitaxial growth. Here, we report on novel techniques employed to grow high quality Sb-based optoelectronic devices on silicon using molecular beam epitaxy.","PeriodicalId":6657,"journal":{"name":"2017 IEEE Photonics Conference (IPC) Part II","volume":"8 1","pages":"307-308"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Photonics Conference (IPC) Part II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPCON.2017.8116118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
III-V semiconductor heterostructures grown on GaSb and InAs substrates are widely used to produce high performance optoelectronic devices operating in the technologically important mid-infrared spectral range. However, these substrates are expensive, only available in small sizes and have low thermal conductivity. Integration of III-Vs onto silicon substrates offers the opportunity to overcome these shortcomings and opens the possibility of new applications in lab-on-chip MIR photonic integrated circuits. However, the unusual III-V/Si interface and large lattice mismatch presents challenges to epitaxial growth. Here, we report on novel techniques employed to grow high quality Sb-based optoelectronic devices on silicon using molecular beam epitaxy.