Machine-Learning-Based Hybrid Modeling for Geological Hazard Susceptibility Assessment in Wudou District, Bailong River Basin, China

IF 6.5 3区 工程技术 Q1 ENGINEERING, GEOLOGICAL Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards Pub Date : 2023-05-04 DOI:10.3390/geohazards4020010
Zhijun Wang, Zhuofan Chen, Ke Ma, Zuoxiong Zhang
{"title":"Machine-Learning-Based Hybrid Modeling for Geological Hazard Susceptibility Assessment in Wudou District, Bailong River Basin, China","authors":"Zhijun Wang, Zhuofan Chen, Ke Ma, Zuoxiong Zhang","doi":"10.3390/geohazards4020010","DOIUrl":null,"url":null,"abstract":"In the mapping and assessment of mountain hazard susceptibility using machine learning models, the selection of model parameters plays a critical role in the accuracy of predicting models. In this study, we present a novel approach for developing a prediction model based on random forest (RF) by incorporating ensembles of hyperparameter optimization. The performance of the RF model is enhanced by employing a Bayesian optimization (Bayes) method and a genetic algorithm (GA) and verified in the Wudu section of the Bailong River basin, China, which is a typical hazard-prone, mountainous area. We identified fourteen influential factors based on field measurements to describe the “avalanche–landslide–debris flow” hazard chains in the study area. We constructed training (80%) and validation (20%) datasets for 378 hazard sites. The performance of the models was assessed using standard statistical metrics, including recall, confusion matrix, accuracy, F1, precision, and area under the operating characteristic curve (AUC), based on a multicollinearity analysis and Relief-F two-step evaluation. The results indicate that all three models, i.e., RF, GA-RF, and Bayes-RF, achieved good performance (AUC: 0.89~0.92). The Bayes-RF model outperformed the other two models (AUC = 0.92). Therefore, this model is highly accurate and robust for mountain hazard susceptibility assessment and is useful for the study area as well as other regions. Additionally, stakeholders can use the susceptibility map produced to guide mountain hazard prevention and control measures in the region.","PeriodicalId":48524,"journal":{"name":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geohazards4020010","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the mapping and assessment of mountain hazard susceptibility using machine learning models, the selection of model parameters plays a critical role in the accuracy of predicting models. In this study, we present a novel approach for developing a prediction model based on random forest (RF) by incorporating ensembles of hyperparameter optimization. The performance of the RF model is enhanced by employing a Bayesian optimization (Bayes) method and a genetic algorithm (GA) and verified in the Wudu section of the Bailong River basin, China, which is a typical hazard-prone, mountainous area. We identified fourteen influential factors based on field measurements to describe the “avalanche–landslide–debris flow” hazard chains in the study area. We constructed training (80%) and validation (20%) datasets for 378 hazard sites. The performance of the models was assessed using standard statistical metrics, including recall, confusion matrix, accuracy, F1, precision, and area under the operating characteristic curve (AUC), based on a multicollinearity analysis and Relief-F two-step evaluation. The results indicate that all three models, i.e., RF, GA-RF, and Bayes-RF, achieved good performance (AUC: 0.89~0.92). The Bayes-RF model outperformed the other two models (AUC = 0.92). Therefore, this model is highly accurate and robust for mountain hazard susceptibility assessment and is useful for the study area as well as other regions. Additionally, stakeholders can use the susceptibility map produced to guide mountain hazard prevention and control measures in the region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的白龙江流域五斗区地质灾害易感性评价混合模型
在利用机器学习模型进行山地灾害易感性制图和评估中,模型参数的选择对预测模型的准确性起着至关重要的作用。在这项研究中,我们提出了一种基于随机森林(RF)的新方法,通过结合超参数优化的集合来建立预测模型。采用贝叶斯优化(Bayes)方法和遗传算法(GA)增强了模型的性能,并在白龙江流域武都段进行了验证。武都段是一个典型的灾害易发山区。在野外测量的基础上,我们确定了14个影响因素来描述研究区域的“雪崩-滑坡-泥石流”危险链。我们为378个危险地点构建了训练(80%)和验证(20%)数据集。采用基于多重共线性分析和Relief-F两步评价的标准统计指标,包括召回率、混淆矩阵、准确度、F1、精度和工作特征曲线下面积(AUC),对模型的性能进行评估。结果表明,RF、GA-RF和Bayes-RF三种模型均取得了较好的性能(AUC为0.89~0.92)。Bayes-RF模型优于其他两种模型(AUC = 0.92)。因此,该模型对山地灾害易感性评价具有较高的准确性和鲁棒性,对研究区及其他地区具有一定的参考价值。此外,利益相关者可以利用绘制的易感度图来指导该地区的山地灾害防治措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
10.40%
发文量
31
期刊介绍: Georisk covers many diversified but interlinked areas of active research and practice, such as geohazards (earthquakes, landslides, avalanches, rockfalls, tsunamis, etc.), safety of engineered systems (dams, buildings, offshore structures, lifelines, etc.), environmental risk, seismic risk, reliability-based design and code calibration, geostatistics, decision analyses, structural reliability, maintenance and life cycle performance, risk and vulnerability, hazard mapping, loss assessment (economic, social, environmental, etc.), GIS databases, remote sensing, and many other related disciplines. The underlying theme is that uncertainties associated with geomaterials (soils, rocks), geologic processes, and possible subsequent treatments, are usually large and complex and these uncertainties play an indispensable role in the risk assessment and management of engineered and natural systems. Significant theoretical and practical challenges remain on quantifying these uncertainties and developing defensible risk management methodologies that are acceptable to decision makers and stakeholders. Many opportunities to leverage on the rapid advancement in Bayesian analysis, machine learning, artificial intelligence, and other data-driven methods also exist, which can greatly enhance our decision-making abilities. The basic goal of this international peer-reviewed journal is to provide a multi-disciplinary scientific forum for cross fertilization of ideas between interested parties working on various aspects of georisk to advance the state-of-the-art and the state-of-the-practice.
期刊最新文献
Evaluating the Impact of Engineering Works in Megatidal Areas Using Satellite Images—Case of the Mont-Saint-Michel Bay, France Assessment of a Machine Learning Algorithm Using Web Images for Flood Detection and Water Level Estimates Digital geotechnics: from data-driven site characterisation towards digital transformation and intelligence in geotechnical engineering Induced Seismicity Hazard Assessment for a Potential CO2 Storage Site in the Southern San Joaquin Basin, CA Novel evaluation methodology for mechanical behaviour and instability risk of roof structure using limited investigation data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1