Efficiency of Using Cored Graphitized Electrodes on Electric Arc Furnaces of Direct Current

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Advances in Materials Science Pub Date : 2023-03-01 DOI:10.2478/adms-2023-0006
А.G. Bogachenko, D. Mishchenko, I. Goncharov, V. Braginets, I.A. Neylo, Y.A. Plevako
{"title":"Efficiency of Using Cored Graphitized Electrodes on Electric Arc Furnaces of Direct Current","authors":"А.G. Bogachenko, D. Mishchenko, I. Goncharov, V. Braginets, I.A. Neylo, Y.A. Plevako","doi":"10.2478/adms-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract An effective means for improvement of technical and economic indicators of EAF DC are graphitized cored electrodes, designed at the E.O. Paton Electric Welding Institute. The research works of the first stage, carried out in the industrial furnaces of the type EAF DC-12, showed that the arc of the cored electrode is always maintained in the center of the electrode, a stable electric mode of melting is provided on long arcs and low voltages of the power source. It was established that the voltage in the near cathode area, as well as the range of current and voltage pulsation of the cored electrode arc is significantly lower than in the standard (monolithic) graphitized electrode. These factors determined the saving of active energy, reduction of reactive power losses, increase in cos φ and reduction of the furnace noise level","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/adms-2023-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract An effective means for improvement of technical and economic indicators of EAF DC are graphitized cored electrodes, designed at the E.O. Paton Electric Welding Institute. The research works of the first stage, carried out in the industrial furnaces of the type EAF DC-12, showed that the arc of the cored electrode is always maintained in the center of the electrode, a stable electric mode of melting is provided on long arcs and low voltages of the power source. It was established that the voltage in the near cathode area, as well as the range of current and voltage pulsation of the cored electrode arc is significantly lower than in the standard (monolithic) graphitized electrode. These factors determined the saving of active energy, reduction of reactive power losses, increase in cos φ and reduction of the furnace noise level
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石墨化芯电极在直流电弧炉上的使用效率
摘要:epon电焊研究所设计的石墨化芯电极是提高电弧电弧直流技术经济指标的有效手段。在电弧炉DC-12型工业炉上进行的第一阶段研究工作表明,芯电极的电弧始终保持在电极的中心,在较长的电弧和较低的电源电压下提供稳定的熔化电模式。实验结果表明,在近阴极区域的电压,以及芯电极电弧的电流和电压脉动范围明显低于标准(单片)石墨化电极。这些因素决定了节能有功、降低无功损耗、提高cos φ和降低炉膛噪声水平
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Materials Science
Advances in Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
7.70%
发文量
0
期刊最新文献
Mechanical Properties of Titanium Grade 1 After Laser Shock Wave Treatment Leading-Edge Polymer/Carbonaceous Nano-Reinforcement Nanocomposites—Opportunities for Space Sector The Effects of ArC Voltage and Shielding Gas Type on the Microstructure of Wire ArC Additively Manufactured 2209 Duplex Stainless Steel Mechanical and Corrosion Properties of Friction Stir Welded and Tungsten Inert Gas Welded Phosphor Bronze Numerical and Experimental Analysis of the Forging of a Bimetallic Crosshead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1