L. Legrand, C. Hern'andez-Monteagudo, M. Douspis, N. Aghanim, R. Angulo
{"title":"High-resolution tomography for galaxy spectroscopic surveys with angular redshift fluctuations","authors":"L. Legrand, C. Hern'andez-Monteagudo, M. Douspis, N. Aghanim, R. Angulo","doi":"10.1051/0004-6361/202039049","DOIUrl":null,"url":null,"abstract":"In the context of next generation spectroscopic galaxy surveys, new observables of the distribution of matter are currently being developed. Among these we investigate the angular redshift fluctuations (ARF), which probe the information contained in the projected redshift distribution of galaxies. Relying on the Fisher formalism, we show how ARF will provide complementary cosmological information compared to traditional angular galaxy clustering. We test both the standard $\\Lambda$CDM model and the wCDM extension. We find that the cosmological and galaxy bias parameters express different degeneracies when inferred from ARF or from angular galaxy clustering. As such, combining both observables breaks these degeneracies and greatly decreases the marginalised uncertainties, by a factor of at least two on most parameters for the $\\Lambda$CDM and wCDM model. We find that the ARF combined with angular galaxy clustering are a great probe of dark energy by increasing the figure of merit of the $w_0$-$w_{\\rm a}$ parameter set by a factor of more than 10 compared to angular galaxy clustering alone. Finally we compare ARF to the CMB lensing constraints on the galaxy bias parameters. We show that a joint analysis of ARF and angular galaxy clustering improves constraints by $\\sim 40\\%$ on galaxy bias compared to a joint analysis of angular galaxy clustering and CMB lensing.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202039049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In the context of next generation spectroscopic galaxy surveys, new observables of the distribution of matter are currently being developed. Among these we investigate the angular redshift fluctuations (ARF), which probe the information contained in the projected redshift distribution of galaxies. Relying on the Fisher formalism, we show how ARF will provide complementary cosmological information compared to traditional angular galaxy clustering. We test both the standard $\Lambda$CDM model and the wCDM extension. We find that the cosmological and galaxy bias parameters express different degeneracies when inferred from ARF or from angular galaxy clustering. As such, combining both observables breaks these degeneracies and greatly decreases the marginalised uncertainties, by a factor of at least two on most parameters for the $\Lambda$CDM and wCDM model. We find that the ARF combined with angular galaxy clustering are a great probe of dark energy by increasing the figure of merit of the $w_0$-$w_{\rm a}$ parameter set by a factor of more than 10 compared to angular galaxy clustering alone. Finally we compare ARF to the CMB lensing constraints on the galaxy bias parameters. We show that a joint analysis of ARF and angular galaxy clustering improves constraints by $\sim 40\%$ on galaxy bias compared to a joint analysis of angular galaxy clustering and CMB lensing.