C. Rudaz, A. Demilecamps, G. Pour, M. Alves, A. Rigacci, H. Sallée, G. Reichenauer, T. Budtova
{"title":"Bio-based Aerogels: A New Generation of Thermal Superinsulating Materials","authors":"C. Rudaz, A. Demilecamps, G. Pour, M. Alves, A. Rigacci, H. Sallée, G. Reichenauer, T. Budtova","doi":"10.1002/9781119217619.CH15","DOIUrl":null,"url":null,"abstract":"Aerogels are highly porous, ultra-light (density around 0.1 g/cm3) nanostructured materials. One of their most extraordinary properties is thermal super-insulation, i.e. thermal conductivity below that of the air: 0.015 vs 0.025 W/(m.K) in room conditions. However, classical silica aerogels are extremely fragile and organic/synthetic (resorcinol-formaldehyde) aerogels may include toxic components, which hinders their wide application. Bio-aerogels are a new generation of aerogels made from biomass-based polymers, mainly polysaccharides. We prepared aerogels from cellulose (“aerocellulose” /1, 2/) and pectin (“aeropectin” /3/) via polymer dissolution, coagulation and drying with super-critical CO2. Their density varies from 0.05 to 0.2 g/cm3 and specific surface area is around 200-300 m2/g. Bio-aerogels are mechanically strong, with Young’s moduli from 1-2 to 20-30 MPa and plastic deformation up to 60-70% strain before the pore walls collapse. Aeropectin thermal conductivity turned to be around 0.015 – 0.020 W/(m.K) making it the first reported thermal super-insulating fully biomass-based aerogel. The thermal conductivity of aerocellulose is rather “high”, around 0.030-0.035 W/(m.K), due to the presence of large macropores. We demonstrate that by using polysaccharide functionalization and making polymer-silica aerogel hybrids it is possible to vary specific surface area (increase to 800-900 m2/g) and decrease aerogel thermal conductivity below that of the air.","PeriodicalId":15213,"journal":{"name":"纤维素科学与技术","volume":"186 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"纤维素科学与技术","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1002/9781119217619.CH15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Aerogels are highly porous, ultra-light (density around 0.1 g/cm3) nanostructured materials. One of their most extraordinary properties is thermal super-insulation, i.e. thermal conductivity below that of the air: 0.015 vs 0.025 W/(m.K) in room conditions. However, classical silica aerogels are extremely fragile and organic/synthetic (resorcinol-formaldehyde) aerogels may include toxic components, which hinders their wide application. Bio-aerogels are a new generation of aerogels made from biomass-based polymers, mainly polysaccharides. We prepared aerogels from cellulose (“aerocellulose” /1, 2/) and pectin (“aeropectin” /3/) via polymer dissolution, coagulation and drying with super-critical CO2. Their density varies from 0.05 to 0.2 g/cm3 and specific surface area is around 200-300 m2/g. Bio-aerogels are mechanically strong, with Young’s moduli from 1-2 to 20-30 MPa and plastic deformation up to 60-70% strain before the pore walls collapse. Aeropectin thermal conductivity turned to be around 0.015 – 0.020 W/(m.K) making it the first reported thermal super-insulating fully biomass-based aerogel. The thermal conductivity of aerocellulose is rather “high”, around 0.030-0.035 W/(m.K), due to the presence of large macropores. We demonstrate that by using polysaccharide functionalization and making polymer-silica aerogel hybrids it is possible to vary specific surface area (increase to 800-900 m2/g) and decrease aerogel thermal conductivity below that of the air.
期刊介绍:
Journal of Cellulose Science and Technology is an official academic journal approved by the former General Administration of Press and Publication of the People's Republic of China (GAPP) and is openly circulated both at home and abroad.
Journal of Cellulose Science and Technology is listed in Chemical Abstracts (CA), China Academic Journal Comprehensive Evaluation Database, JST (Japan Science and Technology Agency) Database (Japan) (2018), China Science Citation Database (CSCDB), China Science Citation Database (CSCD), and Japan Science and Technology Organization (JSTO) Database (Japan) (2018). ) (2018)”, ‘China Science Citation Database’, ‘China Core Periodicals (Selection) Database’, ‘China Periodicals Full Text Database’, ”China Academic Journal Network ”, “China Academic Journals (CD-ROM Edition)”, “Wanfang Digital Journal Group” and “Chinese Science and Technology Journal Database”, “The Fifth Guangdong Outstanding Journals (2018) “ etc.