A framework for differentially-private knowledge graph embeddings

Pub Date : 2022-04-01 DOI:10.1016/j.websem.2021.100696
Xiaolin Han , Daniele Dell’Aglio , Tobias Grubenmann , Reynold Cheng , Abraham Bernstein
{"title":"A framework for differentially-private knowledge graph embeddings","authors":"Xiaolin Han ,&nbsp;Daniele Dell’Aglio ,&nbsp;Tobias Grubenmann ,&nbsp;Reynold Cheng ,&nbsp;Abraham Bernstein","doi":"10.1016/j.websem.2021.100696","DOIUrl":null,"url":null,"abstract":"<div><p>Knowledge graph (KG) embedding methods are at the basis of many KG-based data mining tasks<span><span>, such as link prediction and node clustering. However, graphs may contain confidential information about people or organizations, which may be leaked via embeddings. Research recently studied how to apply differential privacy to a number of graphs (and KG) analyses, but embedding methods have not been considered so far. This study moves a step toward filling such a gap, by proposing the Differential </span>Private Knowledge Graph Embedding (DPKGE) framework.</span></p><p>DPKGE extends existing KG embedding methods (e.g., TransE, TransM, RESCAL, and DistMult) and processes KGs containing both confidential and unrestricted statements. The resulting embeddings protect the presence of any of the former statements in the embedding space using differential privacy. Our experiments identify the cases where DPKGE produces useful embeddings, by analyzing the training process and tasks executed on top of the resulting embeddings.</p></div>","PeriodicalId":75319,"journal":{"name":"","volume":"72 ","pages":"Article 100696"},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826821000640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Knowledge graph (KG) embedding methods are at the basis of many KG-based data mining tasks, such as link prediction and node clustering. However, graphs may contain confidential information about people or organizations, which may be leaked via embeddings. Research recently studied how to apply differential privacy to a number of graphs (and KG) analyses, but embedding methods have not been considered so far. This study moves a step toward filling such a gap, by proposing the Differential Private Knowledge Graph Embedding (DPKGE) framework.

DPKGE extends existing KG embedding methods (e.g., TransE, TransM, RESCAL, and DistMult) and processes KGs containing both confidential and unrestricted statements. The resulting embeddings protect the presence of any of the former statements in the embedding space using differential privacy. Our experiments identify the cases where DPKGE produces useful embeddings, by analyzing the training process and tasks executed on top of the resulting embeddings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
差分私有知识图嵌入框架
知识图嵌入方法是许多基于知识图的数据挖掘任务的基础,如链接预测和节点聚类。然而,图形可能包含有关个人或组织的机密信息,这些信息可能通过嵌入泄露。最近的研究研究了如何将差分隐私应用于许多图(和KG)分析,但到目前为止还没有考虑嵌入方法。本研究通过提出差分私有知识图谱嵌入(DPKGE)框架,向填补这一空白迈出了一步。DPKGE扩展了现有的KG嵌入方法(例如,TransE, TransM, RESCAL和DistMult),并处理包含机密和无限制语句的KG。生成的嵌入使用差分隐私保护嵌入空间中任何前面语句的存在。我们的实验通过分析训练过程和在结果嵌入上执行的任务,确定了DPKGE产生有用嵌入的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1