Fast Simplex-HMM for One-Shot Learning Activity Recognition

Mario Rodríguez, C. Orrite-Uruñuela, C. Medrano, D. Makris
{"title":"Fast Simplex-HMM for One-Shot Learning Activity Recognition","authors":"Mario Rodríguez, C. Orrite-Uruñuela, C. Medrano, D. Makris","doi":"10.1109/CVPRW.2017.166","DOIUrl":null,"url":null,"abstract":"The work presented in this paper deals with the challenging task of learning an activity class representation using a single sequence for training. Recently, Simplex-HMM framework has been shown to be an efficient representation for activity classes, however, it presents high computational costs making it impractical in several situations. A dimensionality reduction of the features spaces based on a Maximum at Posteriori adaptation combined with a fast estimation of the optimal parameters in the Expectation Maximization algorithm are presented in this paper. As confirmed by the experimental results, these two modifications not only reduce the computational cost but also maintain the performance or even improve it. The process suitability is experimentally confirmed using the human activity datasets Weizmann, KTH and IXMAS and the gesture dataset ChaLearn.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"35 1","pages":"1259-1266"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The work presented in this paper deals with the challenging task of learning an activity class representation using a single sequence for training. Recently, Simplex-HMM framework has been shown to be an efficient representation for activity classes, however, it presents high computational costs making it impractical in several situations. A dimensionality reduction of the features spaces based on a Maximum at Posteriori adaptation combined with a fast estimation of the optimal parameters in the Expectation Maximization algorithm are presented in this paper. As confirmed by the experimental results, these two modifications not only reduce the computational cost but also maintain the performance or even improve it. The process suitability is experimentally confirmed using the human activity datasets Weizmann, KTH and IXMAS and the gesture dataset ChaLearn.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速Simplex-HMM一次性学习活动识别
本文提出的工作涉及使用单个序列进行训练来学习活动类表示的挑战性任务。最近,Simplex-HMM框架被证明是活动类的一种有效表示,然而,它的计算成本很高,使得它在一些情况下不切实际。本文提出了一种基于极大后验自适应的特征空间降维方法,并结合期望最大化算法中最优参数的快速估计。实验结果表明,这两种改进不仅降低了计算成本,而且保持了性能甚至提高了性能。使用人类活动数据集Weizmann, KTH和IXMAS以及手势数据集ChaLearn进行实验验证了该过程的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring Energy Expenditure in Sports by Thermal Video Analysis Court-Based Volleyball Video Summarization Focusing on Rally Scene Generating 5D Light Fields in Scattering Media for Representing 3D Images Application of Computer Vision and Vector Space Model for Tactical Movement Classification in Badminton A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1