Solving Constrained Multi-objective Optimization Problems Using Non-dominated Ranked Genetic Algorithm

O. Jadaan, C. R. Rao, L. Rajamani
{"title":"Solving Constrained Multi-objective Optimization Problems Using Non-dominated Ranked Genetic Algorithm","authors":"O. Jadaan, C. R. Rao, L. Rajamani","doi":"10.1109/AMS.2009.38","DOIUrl":null,"url":null,"abstract":"A criticism of Evolutionary Algorithms might be the lack of efficient and robust generic methods to handle constraints. The most widespread approach for constrained search problems is to use penalty methods, because of their simplicity and ease of implementation. Nonetheless, the most difficult aspect of the penalty function approach is to find an appropriate penalty parameters. In this paper, a method combining the new Non-dominated Ranked Genetic Algorithm (NRGA), with a parameterless penalty approach are exploited to devise the search to find Pareto optimal set of solutions. The new Parameterless Penalty and the Nondominated Ranked Genetic Algorithm (PP-NRGA) continuously find better Pareto optimal set of solutions. This new algorithm have been evaluated by solving four test problems, reported in the multi-objective evolutionary algorithm (MOEA) literature. Performance comparisons based on quantitative metrics for accuracy, coverage, and spread are presented.","PeriodicalId":6461,"journal":{"name":"2009 Third Asia International Conference on Modelling & Simulation","volume":"10 1","pages":"113-118"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third Asia International Conference on Modelling & Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2009.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A criticism of Evolutionary Algorithms might be the lack of efficient and robust generic methods to handle constraints. The most widespread approach for constrained search problems is to use penalty methods, because of their simplicity and ease of implementation. Nonetheless, the most difficult aspect of the penalty function approach is to find an appropriate penalty parameters. In this paper, a method combining the new Non-dominated Ranked Genetic Algorithm (NRGA), with a parameterless penalty approach are exploited to devise the search to find Pareto optimal set of solutions. The new Parameterless Penalty and the Nondominated Ranked Genetic Algorithm (PP-NRGA) continuously find better Pareto optimal set of solutions. This new algorithm have been evaluated by solving four test problems, reported in the multi-objective evolutionary algorithm (MOEA) literature. Performance comparisons based on quantitative metrics for accuracy, coverage, and spread are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用非支配排序遗传算法求解约束多目标优化问题
对进化算法的批评可能是缺乏有效和健壮的通用方法来处理约束。约束搜索问题最广泛的方法是使用惩罚方法,因为它们简单且易于实现。尽管如此,惩罚函数方法最困难的方面是找到适当的惩罚参数。本文将非支配排序遗传算法(non - dominant rank Genetic Algorithm, NRGA)与无参数惩罚法相结合,设计了寻找Pareto最优解集的搜索方法。新的无参数惩罚和非支配排序遗传算法(PP-NRGA)不断地找到更好的Pareto最优解集。该算法通过求解多目标进化算法(MOEA)文献中报道的四个测试问题进行了评估。提出了基于准确性、覆盖率和传播的定量度量的性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Transparent Classification Model Using a Hybrid Soft Computing Method Study on the Performance of Tag-Tag Collision Avoidance Algorithms in RFID Systems Cross Layer Design of Wireless LAN for Telemedicine Application Jawi Character Speech-to-Text Engine Using Linear Predictive and Neural Network for Effective Reading Advances in Supply Chain Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1