PHYSICS-based retrieval of scattering albedo and vegetation optical depth using multi-sensor data integration

T. Jagdhuber, M. Baur, M. Link, M. Piles, D. Entekhabi, C. Montzka, Jaakko Seppänen, O. Antropov, J. Praks, A. Loew
{"title":"PHYSICS-based retrieval of scattering albedo and vegetation optical depth using multi-sensor data integration","authors":"T. Jagdhuber, M. Baur, M. Link, M. Piles, D. Entekhabi, C. Montzka, Jaakko Seppänen, O. Antropov, J. Praks, A. Loew","doi":"10.1109/IGARSS.2017.8127958","DOIUrl":null,"url":null,"abstract":"Vegetation optical depth and scattering albedo are crucial parameters within the widely used τ-ω model for passive microwave remote sensing of vegetation and soil. A multi-sensor data integration approach using ICESat lidar vegetation heights and SMAP radar as well as radiometer data enables a direct retrieval of the two parameters on a physics-derived basis. The crucial step within the retrieval methodology is the calculus of the vegetation scattering coefficient KS, where one exact and three approximated solutions are provided. It is shown that, when using the assumption of a randomly oriented volume, the backscatter measurements of the radar provide a sufficient first order estimate and subsequently lead to effective estimates of vegetation optical depth and scattering albedo acquired with the novel multi-sensor approach.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"24 1","pages":"4322-4325"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2017.8127958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Vegetation optical depth and scattering albedo are crucial parameters within the widely used τ-ω model for passive microwave remote sensing of vegetation and soil. A multi-sensor data integration approach using ICESat lidar vegetation heights and SMAP radar as well as radiometer data enables a direct retrieval of the two parameters on a physics-derived basis. The crucial step within the retrieval methodology is the calculus of the vegetation scattering coefficient KS, where one exact and three approximated solutions are provided. It is shown that, when using the assumption of a randomly oriented volume, the backscatter measurements of the radar provide a sufficient first order estimate and subsequently lead to effective estimates of vegetation optical depth and scattering albedo acquired with the novel multi-sensor approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多传感器数据集成的散射反照率和植被光学深度的物理检索
植被光学深度和散射反照率是应用广泛的植被与土壤被动微波遥感τ-ω模型的关键参数。使用ICESat激光雷达植被高度和SMAP雷达以及辐射计数据的多传感器数据集成方法可以在物理推导的基础上直接检索这两个参数。检索方法的关键步骤是植被散射系数KS的演算,其中提供了一个精确解和三个近似解。结果表明,当采用随机取向体的假设时,雷达的后向散射测量提供了充分的一阶估计,从而可以有效地估计植被光学深度和散射反照率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ongoing Progress Toward NASA's Surface Biology and Geology Mission Sea Surface Salinity Dynamics in the Bohai Sea Using MODIS Data Water Surface Level Monitoring of the Axios River Wetlands, Greece, Using Airborne and Space-Borne Earth Observation Data Selection of the 3-D Shearlet Cubes for Improving Hyperspectral Image Joint Sparse Classification A New Method for Determining Rain Flag of the Sentinel-3 Altimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1