{"title":"Closed-Loop Transductor-Compensated Class E Driver for Inductive Links","authors":"B. Lenaerts, F. Peeters, R. Puers","doi":"10.1109/SENSOR.2007.4300072","DOIUrl":null,"url":null,"abstract":"When a class E circuit is employed to drive an inductive link, very little tolerance is allowed on the inductance value of the transmitter coil. Deformable coils are thus not compatible with an open- loop class E design. By connecting a transductor in series with the transmitter inductance, it is possible to keep the total class E inductance constant, regardless of the transmitter coil deformation. This is achieved through a control loop that steers the transductor to the appropriate inductance value. For the realized closed-loop circuit, class E regime is maintained for inductance variations of the transmitter coil of up to 27 %. The principal advantage of transductor control compared to earlier reported techniques, is the fixed frequency of operation.","PeriodicalId":23295,"journal":{"name":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","volume":"30 1","pages":"65-68"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2007.4300072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
When a class E circuit is employed to drive an inductive link, very little tolerance is allowed on the inductance value of the transmitter coil. Deformable coils are thus not compatible with an open- loop class E design. By connecting a transductor in series with the transmitter inductance, it is possible to keep the total class E inductance constant, regardless of the transmitter coil deformation. This is achieved through a control loop that steers the transductor to the appropriate inductance value. For the realized closed-loop circuit, class E regime is maintained for inductance variations of the transmitter coil of up to 27 %. The principal advantage of transductor control compared to earlier reported techniques, is the fixed frequency of operation.