A Quantitative Study of Tuning ROS Adaptive Monte Carlo Localization Parameters and their Effect on an AGV Localization

W. Reis, O. Morandin, K. Vivaldini
{"title":"A Quantitative Study of Tuning ROS Adaptive Monte Carlo Localization Parameters and their Effect on an AGV Localization","authors":"W. Reis, O. Morandin, K. Vivaldini","doi":"10.1109/ICAR46387.2019.8981601","DOIUrl":null,"url":null,"abstract":"One key aspect of the use of Automated Guided Vehicles in an industrial environment is its localization effectiveness. Among the existing techniques, the use of a laser scanner stands out. Besides, the Adaptive Monte Carlo Localization algorithm has become a reference in academic research. Despite many works use the AMCL package, they do not fully discuss the effect of the parameters change on the algorithm response and its tuning. This work aims to examine the distinct influence of each tested parameter in AGV localization. We performed the experiments in the same environment, and the AGV ran the same path to enable comparison against the parameters variation. For the 7 parameters tested, the results show the relationship between the package parameters and the localization response behavior. Although the article does not aim to propose the best parameter tuning, the results show the direction to follow in values adjusting.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"67 1","pages":"302-307"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

One key aspect of the use of Automated Guided Vehicles in an industrial environment is its localization effectiveness. Among the existing techniques, the use of a laser scanner stands out. Besides, the Adaptive Monte Carlo Localization algorithm has become a reference in academic research. Despite many works use the AMCL package, they do not fully discuss the effect of the parameters change on the algorithm response and its tuning. This work aims to examine the distinct influence of each tested parameter in AGV localization. We performed the experiments in the same environment, and the AGV ran the same path to enable comparison against the parameters variation. For the 7 parameters tested, the results show the relationship between the package parameters and the localization response behavior. Although the article does not aim to propose the best parameter tuning, the results show the direction to follow in values adjusting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ROS自适应蒙特卡罗定位参数的定量化研究及其对AGV定位的影响
在工业环境中使用自动导向车辆的一个关键方面是其本地化有效性。在现有的技术中,激光扫描仪的使用是最突出的。此外,自适应蒙特卡罗定位算法已成为学术研究的参考。尽管许多工作使用了AMCL包,但他们并没有充分讨论参数变化对算法响应及其调优的影响。这项工作旨在研究每个测试参数对AGV定位的不同影响。我们在相同的环境下进行实验,AGV运行相同的路径,以便对参数变化进行比较。对于测试的7个参数,结果显示了封装参数与定位响应行为之间的关系。虽然本文的目的不是提出最佳的参数调优,但结果显示了值调整的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Domain Randomization Techniques for Transfer Learning Robotito: programming robots from preschool to undergraduate school level A Novel Approach for Parameter Extraction of an NMPC-based Visual Follower Model Automated Conflict Resolution of Lane Change Utilizing Probability Collectives Estimating and Localizing External Forces Applied on Flexible Instruments by Shape Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1