{"title":"Prediction of Track Quality Index (TQI) Using Vehicle Acceleration Data based on Machine Learning","authors":"C. Choi, Hunki Kim, Young Cheul Kim, Sang-su Kim","doi":"10.12814/JKGSS.2020.19.1.045","DOIUrl":null,"url":null,"abstract":"There is an increasing tendency to try to make predictive analysis using measurement data based on machine learning techniques in the railway industries. In this paper, it was predicted that Track quality index (TQI) using vehicle acceleration data based on the machine learning method. The XGB (XGBoost) was the most accurate with 85% in the all data sets. Unlike the SVM model with a single algorithm, the RF and XGB model with a ensemble system were considered to be good at the prediction performance. In the case of the Surface TQI, it is shown that the acceleration of the z axis is highly related to the vertical direction and is in good agreement with the previous studies. Therefore, it is appropriate to apply the model with the ensemble algorithm to predict the track quality index using the vehicle vibration acceleration data because the accuracy may vary depending on the applied model in the machine learning methods.","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Geosynthetic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12814/JKGSS.2020.19.1.045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
There is an increasing tendency to try to make predictive analysis using measurement data based on machine learning techniques in the railway industries. In this paper, it was predicted that Track quality index (TQI) using vehicle acceleration data based on the machine learning method. The XGB (XGBoost) was the most accurate with 85% in the all data sets. Unlike the SVM model with a single algorithm, the RF and XGB model with a ensemble system were considered to be good at the prediction performance. In the case of the Surface TQI, it is shown that the acceleration of the z axis is highly related to the vertical direction and is in good agreement with the previous studies. Therefore, it is appropriate to apply the model with the ensemble algorithm to predict the track quality index using the vehicle vibration acceleration data because the accuracy may vary depending on the applied model in the machine learning methods.