Stacked composite piezoelectric materials for 1.5-D arrays

C. Oakley, B. Pazol, D. Powell, M.R. LaBree, K. M. Gabriel, L. Koornneef, M. Callahan, G. Wojcik
{"title":"Stacked composite piezoelectric materials for 1.5-D arrays","authors":"C. Oakley, B. Pazol, D. Powell, M.R. LaBree, K. M. Gabriel, L. Koornneef, M. Callahan, G. Wojcik","doi":"10.1109/ULTSYM.1997.661731","DOIUrl":null,"url":null,"abstract":"Composite piezoelectric materials with a 1-3 connectivity are almost ideal for transducer applications where the width-to-thickness aspect ratio of individual elements is in the range of about 0.7 to 10 (the range required for most 1.5-D array applications). The high anisotropy of the composite enhances coupling in the thickness mode but reduces the coupling and damps vibrations in the lateral direction. One major drawback of these composites is that the reduced volume fraction of ceramic results in elements with a low capacitance and high electrical impedance making the small elements difficult to drive. A solution to this drawback is to stack the composite material in n layers and connect the layers in parallel to achieve the n/sup 2/ reduction in electrical impedance. This paper presents a method for making stacked composite material and using them in 1.5-D arrays. This method consists of stacking 2-2 composites with the strips running in the scan-plane of the proposed array and creating the 1-3 structure during array construction by using standard dicing and subdicing techniques of the acoustic stack. Measured results from stacked composites made by both the dice-and-fill and injection mold-and-fill methods are presented and compared. The consequences of misalignment are shown and analyzed. The cost implications for both dice-and-fill and injection mold-and-fill methods are discussed.","PeriodicalId":6369,"journal":{"name":"1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118)","volume":"61 1","pages":"923-926 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.1997.661731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Composite piezoelectric materials with a 1-3 connectivity are almost ideal for transducer applications where the width-to-thickness aspect ratio of individual elements is in the range of about 0.7 to 10 (the range required for most 1.5-D array applications). The high anisotropy of the composite enhances coupling in the thickness mode but reduces the coupling and damps vibrations in the lateral direction. One major drawback of these composites is that the reduced volume fraction of ceramic results in elements with a low capacitance and high electrical impedance making the small elements difficult to drive. A solution to this drawback is to stack the composite material in n layers and connect the layers in parallel to achieve the n/sup 2/ reduction in electrical impedance. This paper presents a method for making stacked composite material and using them in 1.5-D arrays. This method consists of stacking 2-2 composites with the strips running in the scan-plane of the proposed array and creating the 1-3 structure during array construction by using standard dicing and subdicing techniques of the acoustic stack. Measured results from stacked composites made by both the dice-and-fill and injection mold-and-fill methods are presented and compared. The consequences of misalignment are shown and analyzed. The cost implications for both dice-and-fill and injection mold-and-fill methods are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于1.5维阵列的堆叠复合压电材料
具有1-3连接的复合压电材料几乎是换能器应用的理想选择,其中单个元件的宽度与厚度长宽比在约0.7至10的范围内(大多数1.5-D阵列应用所需的范围)。复合材料的高各向异性增强了厚度方向的耦合,但减少了横向的耦合和阻尼振动。这些复合材料的一个主要缺点是陶瓷体积分数的减少导致元件具有低电容和高电阻抗,使得小元件难以驱动。解决这一缺点的方法是将复合材料堆叠成n层,并将各层平行连接,以实现电阻抗的n/sup 2/降低。本文提出了一种叠层复合材料的制备方法,并将其应用于1.5维阵列中。该方法包括将2-2复合材料叠加在阵列的扫描面上,并在阵列构建过程中使用声学堆叠的标准切割和下沉技术创建1-3结构。介绍了用注塑模填充法和注塑模填充法制备复合材料的测量结果,并进行了比较。对不对准的后果进行了说明和分析。讨论了注塑模和注塑模的成本影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diamond wafer for SAW application High contrast images of defects in food package seals New properties of the SAW gas sensing Electromagnetic acoustic resonance for studying dislocation formation in polycrystalline pure copper during deformation A new design of ultrasonic air-coupled ribbon transducer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1