Ultrafast phonon‐driven charge transfer in van der Waals heterostructures

IF 2.6 Q2 MULTIDISCIPLINARY SCIENCES Natural sciences (Weinheim, Germany) Pub Date : 2022-07-07 DOI:10.1002/ntls.20220014
Giuseppe Meneghini, S. Brem, E. Malic
{"title":"Ultrafast phonon‐driven charge transfer in van der Waals heterostructures","authors":"Giuseppe Meneghini, S. Brem, E. Malic","doi":"10.1002/ntls.20220014","DOIUrl":null,"url":null,"abstract":"Van der Waals heterostructures built by vertically stacked transition metal dichalcogenides (TMDs) exhibit a rich energy landscape including interlayer and intervalley excitons. Recent experiments demonstrated an ultrafast charge transfer in TMD heterostructures. However, the nature of the charge transfer process has remained elusive. Based on a microscopic and material-realistic exciton theory, we reveal that phonon-mediated scattering via strongly hybridized intervalley excitons governs the charge transfer process that occurs on a sub-100fs timescale. We track the time-, momentum-, and energy-resolved relaxation dynamics of optically excited excitons and determine the temperature- and stacking-dependent charge transfer time for different TMD bilayers. The provided insights present a major step in microscopic understanding of the technologically important charge transfer process in van der Waals heterostructures.","PeriodicalId":74244,"journal":{"name":"Natural sciences (Weinheim, Germany)","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural sciences (Weinheim, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ntls.20220014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 10

Abstract

Van der Waals heterostructures built by vertically stacked transition metal dichalcogenides (TMDs) exhibit a rich energy landscape including interlayer and intervalley excitons. Recent experiments demonstrated an ultrafast charge transfer in TMD heterostructures. However, the nature of the charge transfer process has remained elusive. Based on a microscopic and material-realistic exciton theory, we reveal that phonon-mediated scattering via strongly hybridized intervalley excitons governs the charge transfer process that occurs on a sub-100fs timescale. We track the time-, momentum-, and energy-resolved relaxation dynamics of optically excited excitons and determine the temperature- and stacking-dependent charge transfer time for different TMD bilayers. The provided insights present a major step in microscopic understanding of the technologically important charge transfer process in van der Waals heterostructures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
范德华异质结构中声子驱动的超快电荷转移
由垂直堆叠的过渡金属二硫族化合物(TMDs)构建的范德华异质结构具有丰富的能量景观,包括层间和谷间激子。最近的实验证明了TMD异质结构中的超快电荷转移。然而,电荷转移过程的性质仍然是难以捉摸的。基于微观和物质现实的激子理论,我们揭示了通过强杂化谷间激子的声子介导散射控制着发生在亚100fs时间尺度上的电荷转移过程。我们跟踪了光激发激子的时间、动量和能量分辨弛豫动力学,并确定了不同TMD双层中与温度和堆叠相关的电荷转移时间。所提供的见解在微观理解范德华异质结构中技术上重要的电荷转移过程方面迈出了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative proteomic analysis of tail regeneration in the green anole lizard, Anolis carolinensis. Isotope effect suggests site‐specific nonadiabaticity on Ge(111)c(2×8) Automated segmentation of insect anatomy from micro‐CT images using deep learning The propagation of Hermite–Gauss wave packets in optics and quantum mechanics Exhaled aerosols and saliva droplets measured in time and 3D space: Quantification of pathogens flow rate applied to SARS‐CoV‐2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1