Model-based clustering of functional data via mixtures of t distributions

IF 1.4 4区 计算机科学 Q2 STATISTICS & PROBABILITY Advances in Data Analysis and Classification Pub Date : 2023-05-12 DOI:10.1007/s11634-023-00542-w
Cristina Anton, Iain Smith
{"title":"Model-based clustering of functional data via mixtures of t distributions","authors":"Cristina Anton,&nbsp;Iain Smith","doi":"10.1007/s11634-023-00542-w","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a procedure, called T-funHDDC, for clustering multivariate functional data with outliers which extends the functional high dimensional data clustering (funHDDC) method (Schmutz et al. in Comput Stat 35:1101–1131, 2020) by considering a mixture of multivariate <i>t</i> distributions. We define a family of latent mixture models following the approach used for the parsimonious models considered in funHDDC and also constraining or not the degrees of freedom of the multivariate <i>t</i> distributions to be equal across the mixture components. The parameters of these models are estimated using an expectation maximization algorithm. In addition to proposing the T-funHDDC method, we add a family of parsimonious models to C-funHDDC, which is an alternative method for clustering multivariate functional data with outliers based on a mixture of contaminated normal distributions (Amovin-Assagba et al. in Comput Stat Data Anal 174:107496, 2022). We compare T-funHDDC, C-funHDDC, and other existing methods on simulated functional data with outliers and for real-world data. T-funHDDC outperforms funHDDC when applied to functional data with outliers, and its good performance makes it an alternative to C-funHDDC. We also apply the T-funHDDC method to the analysis of traffic flow in Edmonton, Canada.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"18 3","pages":"563 - 595"},"PeriodicalIF":1.4000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-023-00542-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a procedure, called T-funHDDC, for clustering multivariate functional data with outliers which extends the functional high dimensional data clustering (funHDDC) method (Schmutz et al. in Comput Stat 35:1101–1131, 2020) by considering a mixture of multivariate t distributions. We define a family of latent mixture models following the approach used for the parsimonious models considered in funHDDC and also constraining or not the degrees of freedom of the multivariate t distributions to be equal across the mixture components. The parameters of these models are estimated using an expectation maximization algorithm. In addition to proposing the T-funHDDC method, we add a family of parsimonious models to C-funHDDC, which is an alternative method for clustering multivariate functional data with outliers based on a mixture of contaminated normal distributions (Amovin-Assagba et al. in Comput Stat Data Anal 174:107496, 2022). We compare T-funHDDC, C-funHDDC, and other existing methods on simulated functional data with outliers and for real-world data. T-funHDDC outperforms funHDDC when applied to functional data with outliers, and its good performance makes it an alternative to C-funHDDC. We also apply the T-funHDDC method to the analysis of traffic flow in Edmonton, Canada.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 t 分布混合物对功能数据进行基于模型的聚类
我们提出了一种名为 T-funHDDC 的程序,用于对有离群值的多元函数数据进行聚类,该程序通过考虑多元 t 分布的混合物,扩展了函数高维数据聚类(funHDDC)方法(Schmutz 等人,载于 Comput Stat 35:1101-1131, 2020)。我们按照在 funHDDC 中考虑的拟合模型的方法,定义了一系列潜在混合物模型,并限制多元 t 分布的自由度在各混合物成分中是否相等。这些模型的参数使用期望最大化算法进行估计。除了提出 T-funHDDC 方法外,我们还为 C-funHDDC 增加了一个拟合模型系列,C-funHDDC 是基于污染正态分布混合物对有异常值的多元函数数据进行聚类的另一种方法(Amovin-Assagba 等,载于 Comput Stat Data Anal 174:107496, 2022)。我们比较了 T-funHDDC、C-funHDDC 和其他现有方法在有异常值的模拟函数数据和真实世界数据中的应用。当应用于有异常值的函数数据时,T-funHDDC优于funHDDC,其良好的性能使其成为C-funHDDC的替代方法。我们还将 T-funHDDC 方法应用于加拿大埃德蒙顿的交通流分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.
期刊最新文献
Editorial for ADAC issue 4 of volume 18 (2024) Special issue on “New methodologies in clustering and classification for complex and/or big data” Marginal models with individual-specific effects for the analysis of longitudinal bipartite networks Using Bagging to improve clustering methods in the context of three-dimensional shapes The chiPower transformation: a valid alternative to logratio transformations in compositional data analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1