{"title":"Study on Severe Slugging in an S-Shaped Riser: Small-Scale Experiments Compared With Simulations","authors":"Sangmin Park, O. Nydal","doi":"10.2118/171559-PA","DOIUrl":null,"url":null,"abstract":"Summary Severe slugging is a transient multiphase-flow phenomenon that can occur in pipeline-riser systems, particularly in offshore production of oil and gas. It is characterized by large pressure fluctuations at the base of the riser and is accompanied by fluctuations in fluid delivery from the top of the riser. This unstable phenomenon is undesirable because production and equipment are affected adversely by the large pressure and flow-rate fluctuations. In this study, air-/ water-flow experiments have been carried out at the S-shaped-riser facility in the multiphase-flow laboratory of the Norwegian University of Science and Technology (NTNU) and have been compared with results from a flow simulator (OLGA®). The results obtained in the work show that stability maps, pressure amplitudes, and slug frequencies are in acceptable agreement with each other; however, some deviations are seen regarding the slug frequencies at low flow rates.","PeriodicalId":19446,"journal":{"name":"Oil and gas facilities","volume":"48 1","pages":"72-80"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil and gas facilities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/171559-PA","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Summary Severe slugging is a transient multiphase-flow phenomenon that can occur in pipeline-riser systems, particularly in offshore production of oil and gas. It is characterized by large pressure fluctuations at the base of the riser and is accompanied by fluctuations in fluid delivery from the top of the riser. This unstable phenomenon is undesirable because production and equipment are affected adversely by the large pressure and flow-rate fluctuations. In this study, air-/ water-flow experiments have been carried out at the S-shaped-riser facility in the multiphase-flow laboratory of the Norwegian University of Science and Technology (NTNU) and have been compared with results from a flow simulator (OLGA®). The results obtained in the work show that stability maps, pressure amplitudes, and slug frequencies are in acceptable agreement with each other; however, some deviations are seen regarding the slug frequencies at low flow rates.