Deep Learning–Based Parameter Transfer in Meteorological Data

Fatemeh Farokhmanesh, Kevin Höhlein, R. Westermann
{"title":"Deep Learning–Based Parameter Transfer in Meteorological Data","authors":"Fatemeh Farokhmanesh, Kevin Höhlein, R. Westermann","doi":"10.1175/aies-d-22-0024.1","DOIUrl":null,"url":null,"abstract":"\nNumerical simulations in Earth-system sciences consider a multitude of physical parameters in space and time, leading to severe input/output (I/O) bandwidth requirements and challenges in subsequent data analysis tasks. Deep learning–based identification of redundant parameters and prediction of those from other parameters, that is, variable-to-variable (V2V) transfer, has been proposed as an approach to lessening the bandwidth requirements and streamlining subsequent data analysis. In this paper, we examine the applicability of V2V to meteorological reanalysis data. We find that redundancies within pairs of parameter fields are limited, which hinders application of the original V2V algorithm. Therefore, we assess the predictive strength of reanalysis parameters by analyzing the learning behavior of V2V reconstruction networks in an ablation study. We demonstrate that efficient V2V transfer becomes possible when considering groups of parameter fields for transfer and propose an algorithm to implement this. We investigate further whether the neural networks trained in the V2V process can yield insightful representations of recurring patterns in the data. The interpretability of these representations is assessed via layerwise relevance propagation that highlights field areas and parameters of high importance for the reconstruction model. Applied to reanalysis data, this allows for uncovering mutual relationships between landscape orography and different regional weather situations. We see our approach as an effective means to reduce bandwidth requirements in numerical weather simulations, which can be used on top of conventional data compression schemes. The proposed identification of multiparameter features can spawn further research on the importance of regional weather situations for parameter prediction and also in other kinds of simulation data.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0024.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Numerical simulations in Earth-system sciences consider a multitude of physical parameters in space and time, leading to severe input/output (I/O) bandwidth requirements and challenges in subsequent data analysis tasks. Deep learning–based identification of redundant parameters and prediction of those from other parameters, that is, variable-to-variable (V2V) transfer, has been proposed as an approach to lessening the bandwidth requirements and streamlining subsequent data analysis. In this paper, we examine the applicability of V2V to meteorological reanalysis data. We find that redundancies within pairs of parameter fields are limited, which hinders application of the original V2V algorithm. Therefore, we assess the predictive strength of reanalysis parameters by analyzing the learning behavior of V2V reconstruction networks in an ablation study. We demonstrate that efficient V2V transfer becomes possible when considering groups of parameter fields for transfer and propose an algorithm to implement this. We investigate further whether the neural networks trained in the V2V process can yield insightful representations of recurring patterns in the data. The interpretability of these representations is assessed via layerwise relevance propagation that highlights field areas and parameters of high importance for the reconstruction model. Applied to reanalysis data, this allows for uncovering mutual relationships between landscape orography and different regional weather situations. We see our approach as an effective means to reduce bandwidth requirements in numerical weather simulations, which can be used on top of conventional data compression schemes. The proposed identification of multiparameter features can spawn further research on the importance of regional weather situations for parameter prediction and also in other kinds of simulation data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的气象数据参数传递
地球系统科学中的数值模拟考虑了空间和时间上的大量物理参数,导致了对输入/输出(I/O)带宽的严格要求和后续数据分析任务的挑战。基于深度学习的冗余参数识别和从其他参数中预测冗余参数,即变量到变量(V2V)传递,已被提出作为一种减少带宽需求和简化后续数据分析的方法。本文探讨了V2V在气象再分析数据中的适用性。我们发现参数字段对之间的冗余是有限的,这阻碍了原始V2V算法的应用。因此,我们通过分析消融研究中V2V重建网络的学习行为来评估再分析参数的预测强度。我们证明了当考虑传输的参数字段组时,有效的V2V传输成为可能,并提出了实现这一目标的算法。我们进一步研究了在V2V过程中训练的神经网络是否能够对数据中重复出现的模式产生有洞察力的表示。这些表示的可解释性通过分层相关性传播来评估,该传播突出了对重建模型高度重要的领域和参数。应用于再分析数据,可以揭示景观地形和不同区域天气状况之间的相互关系。我们认为我们的方法是减少数值天气模拟中带宽需求的有效手段,可以在传统的数据压缩方案之上使用。提出的多参数特征识别可以进一步研究区域天气状况对参数预测的重要性,也可以在其他类型的模拟数据中进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transferability and explainability of deep learning emulators for regional climate model projections: Perspectives for future applications Classification of ice particle shapes using machine learning on forward light scattering images Convolutional encoding and normalizing flows: a deep learning approach for offshore wind speed probabilistic forecasting in the Mediterranean Sea Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects Machine Learning Approach for Spatiotemporal Multivariate Optimization of Environmental Monitoring Sensor Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1