Burnt Area Detection Using Sar Data – A Case Study of May, 2020 Uttarakand Forest Fire

V. Kalaranjini, S. Dinesh Kumar, S. Ramakrishnan, R. Kokila Priya
{"title":"Burnt Area Detection Using Sar Data – A Case Study of May, 2020 Uttarakand Forest Fire","authors":"V. Kalaranjini, S. Dinesh Kumar, S. Ramakrishnan, R. Kokila Priya","doi":"10.1109/InGARSS48198.2020.9358979","DOIUrl":null,"url":null,"abstract":"Uttarakand constitutes 5.43% of Indian Forest cover with extremely and highly fire prone forest areas. The objective of this study is to assess the recent occurrence of forest fires in Uttarakand and to map the burnt areas with Sentinel-1 Synthetic Aperture Radar (SAR) and validate it with the Sentinel-2 as CoVID-19 hindered the field assessment and ground truth validation. The data is processed in Sentinel Application Platform (SNAP) and mapped with ArcGIS. Cross-validated with optical indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index NDWI, Normalized Burn Ratio (NBR) and the firsthand information from Forest Survey of India (FSI) for an area of 10. 83sq.Km, the results are summarized.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"1 1","pages":"241-245"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Uttarakand constitutes 5.43% of Indian Forest cover with extremely and highly fire prone forest areas. The objective of this study is to assess the recent occurrence of forest fires in Uttarakand and to map the burnt areas with Sentinel-1 Synthetic Aperture Radar (SAR) and validate it with the Sentinel-2 as CoVID-19 hindered the field assessment and ground truth validation. The data is processed in Sentinel Application Platform (SNAP) and mapped with ArcGIS. Cross-validated with optical indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index NDWI, Normalized Burn Ratio (NBR) and the firsthand information from Forest Survey of India (FSI) for an area of 10. 83sq.Km, the results are summarized.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Sar数据的烧伤面积探测——以2020年5月北阿坎德邦森林火灾为例
北阿坎德邦占印度森林覆盖率的5.43%,是极易发生火灾的森林地区。本研究的目的是评估北阿坎德邦最近发生的森林火灾,并利用Sentinel-1合成孔径雷达(SAR)绘制烧毁区域地图,并利用Sentinel-2进行验证,因为CoVID-19阻碍了现场评估和地面真相验证。数据在Sentinel Application Platform (SNAP)中进行处理,并用ArcGIS进行制图。利用归一化植被指数(NDVI)、归一化水指数(NDWI)、归一化燃烧比(NBR)等光学指数和印度森林调查(FSI)的第一手资料进行交叉验证。83平方。Km,对结果进行总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGARSS 2020 Copyright Page Automatic Road Delineation Using Deep Neural Network Sparse Representation of Injected Details for MRA-Based Pansharpening InGARSS 2020 Reviewers Experimental Analysis of the Hongqi-1 H9 Satellite Imagery for Geometric Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1