Free Vibration Analysis of Bidirectional Functionally Graded Conical/Cylindrical Shells and Annular Plates on Nonlinear Elastic Foundations, Based on a Unified Differential Transform Analytical Formulation

M. Molla-Alipour, M. Shariyat, M. Shaban
{"title":"Free Vibration Analysis of Bidirectional Functionally Graded Conical/Cylindrical Shells and Annular Plates on Nonlinear Elastic Foundations, Based on a Unified Differential Transform Analytical Formulation","authors":"M. Molla-Alipour, M. Shariyat, M. Shaban","doi":"10.22034/JSM.2019.1869981.1450","DOIUrl":null,"url":null,"abstract":"In the present research, a unified formulation for free vibration analysis of the bidirectional functionally graded conical and cylindrical shells and annular plates on elastic foundations is developed. To cover more individual cases and optimally tailored material properties, the material properties are assumed to vary in both the meridian/radial and transverse directions. The shell/plate is assumed to be supported by a non-uniform Winkler-type elastic foundation in addition to the edge constraints. Therefore, the considered problem contains some complexities that have not been considered together in the available researches. The proposed unified formulation is derived based on the principle of minimum total potential energy and solved using a differential transform analytical method whose center is located at the outer edge of the shell or plate; so that the resulting semi-analytical solution can be employed not only for truncated conical shells and annular plates, but also for complete conical shells and circular plates. Accuracy of results of the proposed unified formulation is verified by comparing the results with those of the three-dimensional theory of elasticity extracted from the ABAQUS finite element analysis code. A variety of the edge condition combinations are considered in the results section. A comprehensive parametric study including assessment of influences of the material properties indices, thickness to radius ratio, stiffness distribution of the elastic foundation, and various boundary conditions, is accomplished. Results reveal that influence of the meridian variations of the material properties on the natural frequencies is more remarkable than that of the transverse gradation.","PeriodicalId":17126,"journal":{"name":"Journal of Solid Mechanics and Materials Engineering","volume":"77 1","pages":"385-400"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid Mechanics and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JSM.2019.1869981.1450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In the present research, a unified formulation for free vibration analysis of the bidirectional functionally graded conical and cylindrical shells and annular plates on elastic foundations is developed. To cover more individual cases and optimally tailored material properties, the material properties are assumed to vary in both the meridian/radial and transverse directions. The shell/plate is assumed to be supported by a non-uniform Winkler-type elastic foundation in addition to the edge constraints. Therefore, the considered problem contains some complexities that have not been considered together in the available researches. The proposed unified formulation is derived based on the principle of minimum total potential energy and solved using a differential transform analytical method whose center is located at the outer edge of the shell or plate; so that the resulting semi-analytical solution can be employed not only for truncated conical shells and annular plates, but also for complete conical shells and circular plates. Accuracy of results of the proposed unified formulation is verified by comparing the results with those of the three-dimensional theory of elasticity extracted from the ABAQUS finite element analysis code. A variety of the edge condition combinations are considered in the results section. A comprehensive parametric study including assessment of influences of the material properties indices, thickness to radius ratio, stiffness distribution of the elastic foundation, and various boundary conditions, is accomplished. Results reveal that influence of the meridian variations of the material properties on the natural frequencies is more remarkable than that of the transverse gradation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于统一微分变换解析公式的非线性弹性基础上双向功能梯度锥形/圆柱壳和环形板自由振动分析
本文提出了弹性基础上双向功能梯度锥形、圆柱壳和环形板自由振动分析的统一公式。为了涵盖更多的个别情况和最佳定制的材料性能,假设材料性能在子午线/径向和横向上都是变化的。除边缘约束外,假定壳/板由非均匀温克勒型弹性基础支撑。因此,所考虑的问题包含了一些在现有研究中没有考虑到的复杂性。根据最小总势能原理推导出统一公式,并采用以壳体或板的外缘为中心的微分变换解析法求解;由此得到的半解析解不仅适用于截尾锥形壳和环形板,而且适用于完整锥形壳和圆形板。通过与从ABAQUS有限元分析程序中提取的三维弹性理论计算结果进行比较,验证了所提统一公式的准确性。结果部分考虑了各种边缘条件组合。对材料性能指标、厚度半径比、弹性基础刚度分布以及各种边界条件的影响进行了全面的参数化研究。结果表明,材料性质的子午变化对固有频率的影响比横向梯度的影响更显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dispersion of SH-Wave in a Heterogeneous Orthotropic Layer Sandwiched Between an Inhomogeneous Semi-Infinite Medium and a Heterogeneous Elastic Half-Space Large Deformation Hermitian Finite Element Coupled Thermoelasticity Analysis of Wave Propagation and Reflection in a Finite Domain Free Torsional Vibration Analysis of Hollow and Solid Non-Uniform Rotating Shafts Using Distributed and Lumped Modeling Technique Multi-Objective Optimization of Shot-Peening Parameters Using Modified Taguchi Technique Study on Vibration Band Gap Characteristics of a Branched Shape Periodic Structure Using the GDQR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1