Application of improved PSO algorithm in power grid fault diagnosis

Bian Li, Duan Yingli, Li Penghua
{"title":"Application of improved PSO algorithm in power grid fault diagnosis","authors":"Bian Li, Duan Yingli, Li Penghua","doi":"10.1109/ZINC50678.2020.9161774","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to improve the weight of Particle swarm optimization (PSO) by using similarity, so as to realize the fast and accurate diagnosis of power grid fault. First, a mathematical model of power grid fault diagnosis is established by analyzing the circuit breaker, equipment protection and action information in the power grid. Next, the model is transformed into a 0-1 integer programming problem. Last, the traditional PSO algorithm is improved, so that the inertia weight in the algorithm can be adjusted dynamically according to the concept of similarity. Simulation results show that the improved PSO greatly increases the convergence speed and efficiency of power grid fault diagnosis.","PeriodicalId":6731,"journal":{"name":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"27 1","pages":"242-247"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC50678.2020.9161774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a method to improve the weight of Particle swarm optimization (PSO) by using similarity, so as to realize the fast and accurate diagnosis of power grid fault. First, a mathematical model of power grid fault diagnosis is established by analyzing the circuit breaker, equipment protection and action information in the power grid. Next, the model is transformed into a 0-1 integer programming problem. Last, the traditional PSO algorithm is improved, so that the inertia weight in the algorithm can be adjusted dynamically according to the concept of similarity. Simulation results show that the improved PSO greatly increases the convergence speed and efficiency of power grid fault diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进粒子群算法在电网故障诊断中的应用
提出了一种利用相似度提高粒子群算法权重的方法,以实现对电网故障的快速准确诊断。首先,通过分析电网中的断路器、设备保护和动作信息,建立了电网故障诊断的数学模型;然后,将该模型转化为0-1整数规划问题。最后,对传统粒子群算法进行改进,使算法中的惯性权重可以根据相似度的概念进行动态调整。仿真结果表明,改进的粒子群算法大大提高了电网故障诊断的收敛速度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Plant Water and Soil Nutrient Requirements RFM and Classification Predictive Modelling to Improve Response Prediction Rate Utility analysis and rating of energy storages in trolleybus power supply system Face recognition based on selection approach via Canonical Correlation Analysis feature fusion The Concept of Consumer IP Address Preservation Behind the Load Balancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1