M. Munsamy, A. Telukdarie, T. Igusa, Marietta M. Squire
{"title":"Hospital energy demand forecasting for prioritisation during periods of constrained supply","authors":"M. Munsamy, A. Telukdarie, T. Igusa, Marietta M. Squire","doi":"10.3926/jiem.4229","DOIUrl":null,"url":null,"abstract":"Purpose: Sustaining healthcare operations without adequate energy capacity creates significant challenges, especially during periods of constrained energy supply. This research develops a clinical and non-clinical activity-based hospital energy model for electrical load prioritization during periods of constrained energy supply.Design/methodology/approach: Discrete event modelling is adopted for development of the hospital energy model (HEM). The basis of the HEM is business process mapping of the hospitals clinical and non-clinical activities. The model prioritizes the electrical load demand as Priority 1, 2 and 3; with Priority 1 activities essential to the survival of patients, Priority 2 activities are critical activities that are required after one to four hours, and Priority 3 activities can run for several hours without electricity.Findings: The model was applied to a small, medium, and large hospital. The results demonstrate that Priority 2 activities have the highest energy demand, followed by Priority 1 and Priority 3 activities, respectively for all hospital sizes. For the medium and large hospitals, the top three contributors to energy demand are lighting, HVAC, and patient services. For the small hospital, it is patient services, lighting, and HVAC, respectively.Research limitations/implications: The model is specific to hospitals but can be modified for other healthcare facilities.Practical implications: The resolution of the electrical energy demand down to the business activity level, enables hospitals to evaluate current practices for optimization. It facilitates multiple energy supply scenarios, enabling hospital management to conduct feasibility studies based on available power supply optionsSocial implications: Improved planning of capital expenditure and operational budgets and during constrained energy supply. This reduces risk to hospitals and ensures consistent quality of service. Originality/value: Current hospital energy models are limited, especially for operations management under constrained energy supply. A simple to use model is proposed to assist in planning of activities based on available supply.","PeriodicalId":38526,"journal":{"name":"International Journal of Industrial Engineering and Management","volume":"7 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3926/jiem.4229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Sustaining healthcare operations without adequate energy capacity creates significant challenges, especially during periods of constrained energy supply. This research develops a clinical and non-clinical activity-based hospital energy model for electrical load prioritization during periods of constrained energy supply.Design/methodology/approach: Discrete event modelling is adopted for development of the hospital energy model (HEM). The basis of the HEM is business process mapping of the hospitals clinical and non-clinical activities. The model prioritizes the electrical load demand as Priority 1, 2 and 3; with Priority 1 activities essential to the survival of patients, Priority 2 activities are critical activities that are required after one to four hours, and Priority 3 activities can run for several hours without electricity.Findings: The model was applied to a small, medium, and large hospital. The results demonstrate that Priority 2 activities have the highest energy demand, followed by Priority 1 and Priority 3 activities, respectively for all hospital sizes. For the medium and large hospitals, the top three contributors to energy demand are lighting, HVAC, and patient services. For the small hospital, it is patient services, lighting, and HVAC, respectively.Research limitations/implications: The model is specific to hospitals but can be modified for other healthcare facilities.Practical implications: The resolution of the electrical energy demand down to the business activity level, enables hospitals to evaluate current practices for optimization. It facilitates multiple energy supply scenarios, enabling hospital management to conduct feasibility studies based on available power supply optionsSocial implications: Improved planning of capital expenditure and operational budgets and during constrained energy supply. This reduces risk to hospitals and ensures consistent quality of service. Originality/value: Current hospital energy models are limited, especially for operations management under constrained energy supply. A simple to use model is proposed to assist in planning of activities based on available supply.
期刊介绍:
International Journal of Industrial Engineering and Management (IJIEM) is an interdisciplinary international academic journal published quarterly. IJIEM serves researchers in the industrial engineering, manufacturing engineering and management fields. The major aims are: To collect and disseminate information on new and advanced developments in the field of industrial engineering and management; To encourage further progress in engineering and management methodology and applications; To cover the range of engineering and management development and usage in their use of managerial policies and strategies. Thus, IJIEM invites the submission of original, high quality, theoretical and application-oriented research; general surveys and critical reviews; educational or training articles including case studies, in the field of industrial engineering and management. The journal covers all aspects of industrial engineering and management, particularly: -Smart Manufacturing & Industry 4.0, -Production Systems, -Service Engineering, -Automation, Robotics and Mechatronics, -Information and Communication Systems, -ICT for Collaborative Manufacturing, -Quality, Maintenance and Logistics, -Safety and Reliability, -Organization and Human Resources, -Engineering Management, -Entrepreneurship and Innovation, -Project Management, -Marketing and Commerce, -Investment, Finance and Accounting, -Insurance Engineering and Management, -Media Engineering and Management, -Education and Practices in Industrial Engineering and Management.