{"title":"Distributed Probabilistic Fuzzy Rule Mining for Clinical Decision Making","authors":"Samane Sharif, M. Akbarzadeh-T.","doi":"10.1080/16168658.2021.1978803","DOIUrl":null,"url":null,"abstract":"INTRODUCTION: With the growing size, complexity, and distributivity of databases, efficiency and scalability have become highly desirable attributes of data mining algorithms in decision support systems. OBJECTIVES: This study aims for a computational framework for clinical decision support systems that can handle inconsistent dataset while also being interpretable and scalable. METHODS: This paper proposes a Distributed Probabilistic Fuzzy Rule Mining (DPFRM) algorithm that extracts probabilistic fuzzy rules from numerical data using a self-organizing multi-agent approach. This agent-based method provides better scalability and fewer rules through agent interactions and rule-sharing. RESULTS: The performance of the proposed approach is investigated on several UCI medical datasets. The DPFRM is also used for predicting the mortality rate of burn patients. Statistical analysis confirms that the DPFRM significantly improves burn mortality prediction by at least 3%. Also, the training time is improved by 17% if implemented by a parallel computer. However, this speedup decreases with increased distributivity, due to the added communication overhead. CONCLUSION: The proposed approach can improve the accuracy of decision making by better handling of inconsistencies within the datasets. Furthermore, noise sensitivity analysis demonstrates that the DPFRM deteriorates more robustly as the noise levels increase.","PeriodicalId":37623,"journal":{"name":"Fuzzy Information and Engineering","volume":"30 1","pages":"436 - 459"},"PeriodicalIF":1.3000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Information and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16168658.2021.1978803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
INTRODUCTION: With the growing size, complexity, and distributivity of databases, efficiency and scalability have become highly desirable attributes of data mining algorithms in decision support systems. OBJECTIVES: This study aims for a computational framework for clinical decision support systems that can handle inconsistent dataset while also being interpretable and scalable. METHODS: This paper proposes a Distributed Probabilistic Fuzzy Rule Mining (DPFRM) algorithm that extracts probabilistic fuzzy rules from numerical data using a self-organizing multi-agent approach. This agent-based method provides better scalability and fewer rules through agent interactions and rule-sharing. RESULTS: The performance of the proposed approach is investigated on several UCI medical datasets. The DPFRM is also used for predicting the mortality rate of burn patients. Statistical analysis confirms that the DPFRM significantly improves burn mortality prediction by at least 3%. Also, the training time is improved by 17% if implemented by a parallel computer. However, this speedup decreases with increased distributivity, due to the added communication overhead. CONCLUSION: The proposed approach can improve the accuracy of decision making by better handling of inconsistencies within the datasets. Furthermore, noise sensitivity analysis demonstrates that the DPFRM deteriorates more robustly as the noise levels increase.
期刊介绍:
Fuzzy Information and Engineering—An International Journal wants to provide a unified communication platform for researchers in a wide area of topics from pure and applied mathematics, computer science, engineering, and other related fields. While also accepting fundamental work, the journal focuses on applications. Research papers, short communications, and reviews are welcome. Technical topics within the scope include: (1) Fuzzy Information a. Fuzzy information theory and information systems b. Fuzzy clustering and classification c. Fuzzy information processing d. Hardware and software co-design e. Fuzzy computer f. Fuzzy database and data mining g. Fuzzy image processing and pattern recognition h. Fuzzy information granulation i. Knowledge acquisition and representation in fuzzy information (2) Fuzzy Sets and Systems a. Fuzzy sets b. Fuzzy analysis c. Fuzzy topology and fuzzy mapping d. Fuzzy equation e. Fuzzy programming and optimal f. Fuzzy probability and statistic g. Fuzzy logic and algebra h. General systems i. Fuzzy socioeconomic system j. Fuzzy decision support system k. Fuzzy expert system (3) Soft Computing a. Soft computing theory and foundation b. Nerve cell algorithms c. Genetic algorithms d. Fuzzy approximation algorithms e. Computing with words and Quantum computation (4) Fuzzy Engineering a. Fuzzy control b. Fuzzy system engineering c. Fuzzy knowledge engineering d. Fuzzy management engineering e. Fuzzy design f. Fuzzy industrial engineering g. Fuzzy system modeling (5) Fuzzy Operations Research [...] (6) Artificial Intelligence [...] (7) Others [...]