{"title":"Review on Immunity to Fungal Infections in Animals","authors":"Dessie Abera","doi":"10.11648/j.avs.20221002.11","DOIUrl":null,"url":null,"abstract":": The occurrence of mycosis is relatively uncommon in healthy and immunocompetent hosts. But now a days, the incidence of fungal infections are increasing and there is no effective vaccine for fungal infections in contrast to bacterial and viral diseases. And also, available antifungal drugs are not effective to treat infected animals. Understanding the immunity against fungal infections is of interest which can contribute more for therapeutic and vaccine development. Therefore, this review focuses on the immune components involved in clearing fungal pathogens. Disease outcome is a result of host-pathogen interactions. Immunity is the body’s resistance to infection. Innate and acquired immune systems are involved to eliminate animal fungal infections. Innate immunity is not specific. It is the first line of defense, with genetically encoded receptors that identify greatly conserved pathogen-associated molecular patterns. Physical barriers, phagocytic cells, chemotactic factors and natural killer cells are some of the innate defense mechanisms. Adaptive immunity is specific. Lymphocytes have a unique and specific antigen receptor. It can be a humoral or cellular type of immune system. In adaptive immunity, there is a development of immunological memory in the host after exposure to a pathogen. However, there are no effective vaccines and antifungal drugs. So it causes high morbidity and mortality in animals and fungal pathogens have become a significant clinical challenge, leading to a global threat to controlling fungal infections. Therefore, good management of animals and treating concurrent infections strengthens their immunity. Besides, promoting research into fungal infections to develop new diagnostics, anti-fungal drugs and vaccines are recommended.","PeriodicalId":7842,"journal":{"name":"Animal and Veterinary Sciences","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal and Veterinary Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.avs.20221002.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
: The occurrence of mycosis is relatively uncommon in healthy and immunocompetent hosts. But now a days, the incidence of fungal infections are increasing and there is no effective vaccine for fungal infections in contrast to bacterial and viral diseases. And also, available antifungal drugs are not effective to treat infected animals. Understanding the immunity against fungal infections is of interest which can contribute more for therapeutic and vaccine development. Therefore, this review focuses on the immune components involved in clearing fungal pathogens. Disease outcome is a result of host-pathogen interactions. Immunity is the body’s resistance to infection. Innate and acquired immune systems are involved to eliminate animal fungal infections. Innate immunity is not specific. It is the first line of defense, with genetically encoded receptors that identify greatly conserved pathogen-associated molecular patterns. Physical barriers, phagocytic cells, chemotactic factors and natural killer cells are some of the innate defense mechanisms. Adaptive immunity is specific. Lymphocytes have a unique and specific antigen receptor. It can be a humoral or cellular type of immune system. In adaptive immunity, there is a development of immunological memory in the host after exposure to a pathogen. However, there are no effective vaccines and antifungal drugs. So it causes high morbidity and mortality in animals and fungal pathogens have become a significant clinical challenge, leading to a global threat to controlling fungal infections. Therefore, good management of animals and treating concurrent infections strengthens their immunity. Besides, promoting research into fungal infections to develop new diagnostics, anti-fungal drugs and vaccines are recommended.