N. Guan, X. Dai, J. Eymery, C. Durand, M. Tchernycheva
{"title":"Nitride-nanowire-based flexible LEDs","authors":"N. Guan, X. Dai, J. Eymery, C. Durand, M. Tchernycheva","doi":"10.1117/2.1201704.006895","DOIUrl":null,"url":null,"abstract":"Nitride LEDs are coming to replace other light sources in almost all general lighting, as well as in displays and life-science applications. Inorganic semiconductor devices, however, are naturally mechanically rigid and cannot be used in applications that require mechanical flexibility. Flexible LEDs are therefore currently a topic of intense research, as they are desirable for use in many applications, including rollable displays, wearable intelligent optoelectronics, bendable or implantable light sources, and biomedical devices. At present, flexible devices are mainly fabricated from organic materials. For example, organic LEDs (OLEDs) are already being used commercially in curved TV and smartphone screens. However, OLEDs have worse temporal stability and lower luminescence (especially in the blue spectral range) than nitride semiconductor LEDs. Substantial research efforts are thus being made to fabricate flexible inorganic LEDs.1","PeriodicalId":22075,"journal":{"name":"Spie Newsroom","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spie Newsroom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/2.1201704.006895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Nitride LEDs are coming to replace other light sources in almost all general lighting, as well as in displays and life-science applications. Inorganic semiconductor devices, however, are naturally mechanically rigid and cannot be used in applications that require mechanical flexibility. Flexible LEDs are therefore currently a topic of intense research, as they are desirable for use in many applications, including rollable displays, wearable intelligent optoelectronics, bendable or implantable light sources, and biomedical devices. At present, flexible devices are mainly fabricated from organic materials. For example, organic LEDs (OLEDs) are already being used commercially in curved TV and smartphone screens. However, OLEDs have worse temporal stability and lower luminescence (especially in the blue spectral range) than nitride semiconductor LEDs. Substantial research efforts are thus being made to fabricate flexible inorganic LEDs.1