Strober: Fast and Accurate Sample-Based Energy Simulation for Arbitrary RTL

Donggyu Kim, Adam M. Izraelevitz, Christopher Celio, Hokeun Kim, B. Zimmer, Yunsup Lee, J. Bachrach, K. Asanović
{"title":"Strober: Fast and Accurate Sample-Based Energy Simulation for Arbitrary RTL","authors":"Donggyu Kim, Adam M. Izraelevitz, Christopher Celio, Hokeun Kim, B. Zimmer, Yunsup Lee, J. Bachrach, K. Asanović","doi":"10.1145/3007787.3001151","DOIUrl":null,"url":null,"abstract":"This paper presents a sample-based energy simulation methodology that enables fast and accurate estimations of performance and average power for arbitrary RTL designs. Our approach uses an FPGA to simultaneously simulate the performance of an RTL design and to collect samples containing exact RTL state snapshots. Each snapshot is then replayed in gate-level simulation, resulting in a workload-specific average power estimate with confidence intervals. For arbitrary RTL and workloads, our methodology guarantees a minimum of four-orders-of-magnitude speedup over commercial CAD gate-level simulation tools and gives average energy estimates guaranteed to be within 5% of the true average energy with 99% confidence. We believe our open-source sample-based energy simulation tool Strober can not only rapidly provide ground truth for more abstract power models, but can enable productive design-space exploration early in the RTL design process.","PeriodicalId":6634,"journal":{"name":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","volume":"36 1","pages":"128-139"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3007787.3001151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

This paper presents a sample-based energy simulation methodology that enables fast and accurate estimations of performance and average power for arbitrary RTL designs. Our approach uses an FPGA to simultaneously simulate the performance of an RTL design and to collect samples containing exact RTL state snapshots. Each snapshot is then replayed in gate-level simulation, resulting in a workload-specific average power estimate with confidence intervals. For arbitrary RTL and workloads, our methodology guarantees a minimum of four-orders-of-magnitude speedup over commercial CAD gate-level simulation tools and gives average energy estimates guaranteed to be within 5% of the true average energy with 99% confidence. We believe our open-source sample-based energy simulation tool Strober can not only rapidly provide ground truth for more abstract power models, but can enable productive design-space exploration early in the RTL design process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strober:快速准确的基于样本的任意RTL能量模拟
本文提出了一种基于样本的能量仿真方法,可以快速准确地估计任意RTL设计的性能和平均功率。我们的方法使用FPGA来同时模拟RTL设计的性能,并收集包含精确RTL状态快照的样本。然后在门级模拟中重播每个快照,从而产生具有置信区间的特定于工作负载的平均功率估计。对于任意RTL和工作负载,我们的方法保证了比商业CAD门级仿真工具至少4个数量级的加速,并给出了平均能量估计,保证在真实平均能量的5%以内,置信度为99%。我们相信,我们的基于样本的开源能量模拟工具Strober不仅可以快速为更抽象的功率模型提供基础事实,而且可以在RTL设计过程的早期实现高效的设计空间探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RelaxFault Memory Repair Boosting Access Parallelism to PCM-Based Main Memory Bit-Plane Compression: Transforming Data for Better Compression in Many-Core Architectures Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems Energy Efficient Architecture for Graph Analytics Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1