Evaluation of different indicators for representing solar spectral variation

A. Louwen, A. D. de Waal, W. V. van Sark
{"title":"Evaluation of different indicators for representing solar spectral variation","authors":"A. Louwen, A. D. de Waal, W. V. van Sark","doi":"10.1109/PVSC.2016.7749563","DOIUrl":null,"url":null,"abstract":"In studies analyzing the performance of photovoltaic (PV) modules, average photon energy (APE) is often used as an indicator for the effect of solar spectral variation on PV module performance, as it is said to accurately distinguish individual spectra. Especially for a-Si devices, there is a strong correlation between APE and performance. However, there can be significant variation in spectra measured at specific APE values. In this study we analyze the variation of spectra at a range of APE values, and also compare APE as an indicator of spectra to other spectral indicators, namely Blue Fraction (BF), Useful Fraction (UF), Airmass (AM) and Spectral Mismatch Factor (MMF). We compare the indicators by binning spectra at different values of each parameter, and calculating the Root-Mean-Square-Deviation (RMSD) of all spectra in the bin to the mean spectrum in the bin. Subsequently, we compare these calculated results between the different parameters Our results indicate that APE was found the best indicator of spectral variation, with the lowest mean RMSD over the whole range of measured data. However, BF is an almost equally good indicator, and UF and MMF also show a low mean RMSD. Airmass was found to be a quite poor indicator of spectral variation.","PeriodicalId":6524,"journal":{"name":"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2016.7749563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In studies analyzing the performance of photovoltaic (PV) modules, average photon energy (APE) is often used as an indicator for the effect of solar spectral variation on PV module performance, as it is said to accurately distinguish individual spectra. Especially for a-Si devices, there is a strong correlation between APE and performance. However, there can be significant variation in spectra measured at specific APE values. In this study we analyze the variation of spectra at a range of APE values, and also compare APE as an indicator of spectra to other spectral indicators, namely Blue Fraction (BF), Useful Fraction (UF), Airmass (AM) and Spectral Mismatch Factor (MMF). We compare the indicators by binning spectra at different values of each parameter, and calculating the Root-Mean-Square-Deviation (RMSD) of all spectra in the bin to the mean spectrum in the bin. Subsequently, we compare these calculated results between the different parameters Our results indicate that APE was found the best indicator of spectral variation, with the lowest mean RMSD over the whole range of measured data. However, BF is an almost equally good indicator, and UF and MMF also show a low mean RMSD. Airmass was found to be a quite poor indicator of spectral variation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评价代表太阳光谱变化的不同指标
在分析光伏组件性能的研究中,通常使用平均光子能量(APE)作为太阳光谱变化对光伏组件性能影响的指标,据说APE可以准确区分单个光谱。特别是对于a- si器件,APE与性能之间存在很强的相关性。然而,在特定的APE值下测量的光谱可能有显著的变化。在本研究中,我们分析了光谱在APE值范围内的变化,并将APE作为光谱指标与其他光谱指标,即蓝色分数(BF)、有用分数(UF)、空气质量(AM)和光谱失配系数(MMF)进行了比较。我们通过对每个参数不同值下的光谱进行分组,并计算bin中所有光谱与bin中平均光谱的均方根偏差(RMSD)来比较指标。随后,我们将这些计算结果在不同参数之间进行比较,结果表明APE是光谱变化的最佳指标,在整个测量数据范围内平均RMSD最低。然而,BF是一个几乎同样好的指标,UF和MMF也显示出较低的平均RMSD。气团被发现是光谱变化的一个很差的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting the efficiency of III-V/Si tandem solar cells Bandgap and carrier transport engineering of quantum confined mixed phase nanocrystalline/amorphous silicon Improving the radiation hardness of space solar cells via nanophotonic light trapping A comparison between two MPC algorithms for demand charge reduction in a real-world microgrid system Enhancing grain growth and boosting Voc in CZTSe absorber layers — Is Ge doping the answer?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1