Classification and Feature Selection Approaches by Machine Learning Techniques: Heart Disease Prediction

IF 1.3 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Innovative Computing Information and Control Pub Date : 2019-05-31 DOI:10.11113/IJIC.V9N1.210
N. Reddy, Song Shue Nee, Lim Zhi Min, Chew Xin Ying
{"title":"Classification and Feature Selection Approaches by Machine Learning Techniques: Heart Disease Prediction","authors":"N. Reddy, Song Shue Nee, Lim Zhi Min, Chew Xin Ying","doi":"10.11113/IJIC.V9N1.210","DOIUrl":null,"url":null,"abstract":"The heart disease has been one of the major causes of death worldwide. The heart disease diagnosis has been expensive nowadays, thus it is necessary to predict the risk of getting heart disease with selected features. The feature selection methods could be used as valuable techniques to reduce the cost of diagnosis by selecting the important attributes. The objectives of this study are to predict the classification model, and to know which selected features play a key role in the prediction of heart disease by using Cleveland and statlog project heart datasets. The accuracy of random forest algorithm both in classification and feature selection model has been observed to be 90–95% based on three different percentage splits. The 8 and 6 selected features seem to be the minimum feature requirements to build a better performance model. Whereby, further dropping of the 8 or 6 selected features may not lead to better performance for the prediction model.","PeriodicalId":50314,"journal":{"name":"International Journal of Innovative Computing Information and Control","volume":"14 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Computing Information and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/IJIC.V9N1.210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 41

Abstract

The heart disease has been one of the major causes of death worldwide. The heart disease diagnosis has been expensive nowadays, thus it is necessary to predict the risk of getting heart disease with selected features. The feature selection methods could be used as valuable techniques to reduce the cost of diagnosis by selecting the important attributes. The objectives of this study are to predict the classification model, and to know which selected features play a key role in the prediction of heart disease by using Cleveland and statlog project heart datasets. The accuracy of random forest algorithm both in classification and feature selection model has been observed to be 90–95% based on three different percentage splits. The 8 and 6 selected features seem to be the minimum feature requirements to build a better performance model. Whereby, further dropping of the 8 or 6 selected features may not lead to better performance for the prediction model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习技术的分类和特征选择方法:心脏病预测
心脏病一直是世界范围内死亡的主要原因之一。在心脏病诊断费用昂贵的今天,有必要根据选定的特征来预测患心脏病的风险。特征选择方法可以作为一种有价值的技术,通过选择重要的属性来降低诊断成本。本研究的目的是通过使用Cleveland和statlog项目心脏数据集来预测分类模型,并了解哪些选择的特征在预测心脏病中起关键作用。基于三种不同的百分比分割,观察到随机森林算法在分类和特征选择模型上的准确率为90-95%。所选择的8和6个特性似乎是构建更好的性能模型的最低特性要求。因此,进一步删除所选的8或6个特征可能不会为预测模型带来更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
20.00%
发文量
0
审稿时长
4.3 months
期刊介绍: The primary aim of the International Journal of Innovative Computing, Information and Control (IJICIC) is to publish high-quality papers of new developments and trends, novel techniques and approaches, innovative methodologies and technologies on the theory and applications of intelligent systems, information and control. The IJICIC is a peer-reviewed English language journal and is published bimonthly
期刊最新文献
A Robust Image Encryption Scheme Based on Block Compressive Sensing and Wavelet Transform New Proposed Mixed Transforms: CAW and FAW and Their Application in Medical Image Classification A Hybrid Multiwavelet Transform with Grey Wolf Optimization Used for an Efficient Classification of Documents A Useful and Effective Method for Selecting a Smart Controller for SDN Network Design and Implement Fast Dust Sand Image Enhancement Based on Color Correction and New Fuzzy Intensification Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1