Hybrid fault diagnosis capability analysis of regular graphs under the PMC model

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS International Journal of Computer Mathematics: Computer Systems Theory Pub Date : 2020-02-26 DOI:10.1080/23799927.2020.1735523
Hong Zhang, Laijiang Zhang, J. Meng
{"title":"Hybrid fault diagnosis capability analysis of regular graphs under the PMC model","authors":"Hong Zhang, Laijiang Zhang, J. Meng","doi":"10.1080/23799927.2020.1735523","DOIUrl":null,"url":null,"abstract":"Diagnosabilty is an important metric to the capability of fault identification for multiprocessor systems. However, most researches on diagnosability focus on vertex fault. In real circumstances, not only vertex faults take place but also malfunctions may arise. In this paper, we study the diagnosability of k-regular 2-cn graph with missing edges. Let be a set of missing edges in graph G with . We prove that the diagnosability of is at most for . Furthermore, we obtain that the worst-case diagnosability (h-edge tolerable diagnosability), denoted by , is maximum number of faulty nodes that a system G can guarantee to locate when the number of faulty links does not exceed h. As applications, the diagnosabilities of many networks with missing edges are determined under the PMC model.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":"72 1","pages":"61 - 71"},"PeriodicalIF":0.9000,"publicationDate":"2020-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2020.1735523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

Abstract

Diagnosabilty is an important metric to the capability of fault identification for multiprocessor systems. However, most researches on diagnosability focus on vertex fault. In real circumstances, not only vertex faults take place but also malfunctions may arise. In this paper, we study the diagnosability of k-regular 2-cn graph with missing edges. Let be a set of missing edges in graph G with . We prove that the diagnosability of is at most for . Furthermore, we obtain that the worst-case diagnosability (h-edge tolerable diagnosability), denoted by , is maximum number of faulty nodes that a system G can guarantee to locate when the number of faulty links does not exceed h. As applications, the diagnosabilities of many networks with missing edges are determined under the PMC model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PMC模型下正则图的混合故障诊断能力分析
可诊断性是衡量多处理机系统故障识别能力的重要指标。然而,大多数关于可诊断性的研究都集中在顶点故障上。在实际情况下,不仅会发生顶点故障,还可能出现故障。本文研究了缺边k-正则2-cn图的可诊断性。设为图G中缺失边的集合。我们证明的可诊断性最多为。进一步,我们得到了最坏情况可诊断性(h边可容忍可诊断性),用表示为当故障链路数不超过h时,系统G能保证定位的最大故障节点数。作为应用,在PMC模型下确定了许多缺边网络的可诊断性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
期刊最新文献
Temporal Data Modeling and Integrity Constraints in Relational Databases Star structure fault tolerance of Bicube networks A novel conditional connectivity to measure network reliability: r -component block connectivity Eccentricity based Topological indices of Hexagonal Network Some empirical and theoretical attributes of random multi-hooking networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1