The Glasgow Parallel Reduction Machine: Programming Shared-memory Many-core Systems using Parallel Task Composition

IF 0.1 4区 历史学 0 ARCHAEOLOGY Journal of Historic Buildings and Places Pub Date : 2013-12-08 DOI:10.4204/EPTCS.137.7
Ashkan Tousimojarad, W. Vanderbauwhede
{"title":"The Glasgow Parallel Reduction Machine: Programming Shared-memory Many-core Systems using Parallel Task Composition","authors":"Ashkan Tousimojarad, W. Vanderbauwhede","doi":"10.4204/EPTCS.137.7","DOIUrl":null,"url":null,"abstract":"We present the Glasgow Parallel Reduction Machine (GPRM), a novel, flexible framework for parallel task-composition based many-core programming. We allow the programmer to structure programs into task code, written as C++ classes, and communication code, written in a restricted subset of C++ with functional semantics and parallel evaluation. In this paper we discuss the GPRM, the virtual machine framework that enables the parallel task composition approach. We focus the discussion on GPIR, the functional language used as the intermediate representation of the bytecode running on the GPRM. Using examples in this language we show the flexibility and power of our task composition framework. We demonstrate the potential using an implementation of a merge sort algorithm on a 64-core Tilera processor, as well as on a conventional Intel quad-core processor and an AMD 48-core processor system. We also compare our framework with OpenMP tasks in a parallel pointer chasing algorithm running on the Tilera processor. Our results show that the GPRM programs outperform the corresponding OpenMP codes on all test platforms, and can greatly facilitate writing of parallel programs, in particular non-data parallel algorithms such as reductions.","PeriodicalId":53164,"journal":{"name":"Journal of Historic Buildings and Places","volume":"85 1","pages":"79-94"},"PeriodicalIF":0.1000,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Historic Buildings and Places","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.137.7","RegionNum":4,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

We present the Glasgow Parallel Reduction Machine (GPRM), a novel, flexible framework for parallel task-composition based many-core programming. We allow the programmer to structure programs into task code, written as C++ classes, and communication code, written in a restricted subset of C++ with functional semantics and parallel evaluation. In this paper we discuss the GPRM, the virtual machine framework that enables the parallel task composition approach. We focus the discussion on GPIR, the functional language used as the intermediate representation of the bytecode running on the GPRM. Using examples in this language we show the flexibility and power of our task composition framework. We demonstrate the potential using an implementation of a merge sort algorithm on a 64-core Tilera processor, as well as on a conventional Intel quad-core processor and an AMD 48-core processor system. We also compare our framework with OpenMP tasks in a parallel pointer chasing algorithm running on the Tilera processor. Our results show that the GPRM programs outperform the corresponding OpenMP codes on all test platforms, and can greatly facilitate writing of parallel programs, in particular non-data parallel algorithms such as reductions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
格拉斯哥并行约简机:使用并行任务组合编程共享内存多核系统
我们提出了格拉斯哥并行约简机(GPRM),一个新的,灵活的框架并行任务组成为基础的多核编程。我们允许程序员将程序结构成任务代码(用c++类编写)和通信代码(用c++的受限子集编写,带有函数语义和并行求值)。本文讨论了实现并行任务组合方法的虚拟机框架GPRM。我们将重点讨论GPIR,这是一种函数式语言,用作运行在GPRM上的字节码的中间表示。通过使用这种语言中的示例,我们展示了任务组合框架的灵活性和强大功能。我们通过在64核Tilera处理器、传统的Intel四核处理器和AMD 48核处理器系统上实现合并排序算法来展示其潜力。我们还将我们的框架与运行在Tilera处理器上的并行指针跟踪算法中的OpenMP任务进行了比较。我们的研究结果表明,GPRM程序在所有测试平台上都优于相应的OpenMP代码,并且可以极大地促进并行程序的编写,特别是非数据并行算法,如约简。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
8 Tōnosawa Tatara River Nakazu Harbor 3 Nakazu Harbor Aburanokōji Sanjō
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1