{"title":"Chemical Synthesis and Characterization of Nickel Sulphide Thin Film Electrode for Supercapacitor Performances","authors":"M. Sonawane, R. Patil","doi":"10.26438/ijsrpas/v7i1.4245","DOIUrl":null,"url":null,"abstract":"All Nickel Sulphide thin films were deposited onto the stainless steel substrate by modified chemical bath deposition method. The structural, surface morphology were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) respectively. The electrochemical capacitor performances were examined by using cyclic voltammetry and galvanostatic charge-discharge method. The NiS electrode exhibits a good cycling performance. The specific capacitance of 353 Fgm -1 has been obtained in 2 M KOH solution at a scan rate 50 mVs -1 within the potential range 0 to 0.8 V Vs Ag/AgCl. In charge-discharge behaviors, the maximum energy density (E) of 11.7 Whkg -1 and power density (P) of 4.3 kWkg -1 was obtained at a current density 1 mA/cm 2 . Impedance spectroscopic analysis revealed that the ESR is 5 Ω in KOH electrolyte. Keywords— Nickel Sulphide (NiS), Thin films, Cyclic voltammetry, Supercapacitor, Charge-discharge","PeriodicalId":14348,"journal":{"name":"International Journal of Scientific Research in Physics and Applied Sciences","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Physics and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26438/ijsrpas/v7i1.4245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
All Nickel Sulphide thin films were deposited onto the stainless steel substrate by modified chemical bath deposition method. The structural, surface morphology were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) respectively. The electrochemical capacitor performances were examined by using cyclic voltammetry and galvanostatic charge-discharge method. The NiS electrode exhibits a good cycling performance. The specific capacitance of 353 Fgm -1 has been obtained in 2 M KOH solution at a scan rate 50 mVs -1 within the potential range 0 to 0.8 V Vs Ag/AgCl. In charge-discharge behaviors, the maximum energy density (E) of 11.7 Whkg -1 and power density (P) of 4.3 kWkg -1 was obtained at a current density 1 mA/cm 2 . Impedance spectroscopic analysis revealed that the ESR is 5 Ω in KOH electrolyte. Keywords— Nickel Sulphide (NiS), Thin films, Cyclic voltammetry, Supercapacitor, Charge-discharge