Dynamic Insider Threat Detection Based on Adaptable Genetic Programming

Duc C. Le, A. N. Zincir-Heywood, M. Heywood
{"title":"Dynamic Insider Threat Detection Based on Adaptable Genetic Programming","authors":"Duc C. Le, A. N. Zincir-Heywood, M. Heywood","doi":"10.1109/SSCI44817.2019.9003134","DOIUrl":null,"url":null,"abstract":"Different variations in deployment environments of machine learning techniques may affect the performance of the implemented systems. The variations may cause changes in the data for machine learning solutions, such as in the number of classes and the extracted features. This paper investigates the capabilities of Genetic Programming (GP) for malicious insider detection in corporate environments under such changes. Assuming a Linear GP detector, techniques are introduced to allow a previously trained GP population to adapt to different changes in the data. The experiments and evaluation results show promising insider threat detection performances of the techniques in comparison with training machine learning classifiers from scratch. This reduces the amount of data needed and computation requirements for obtaining dependable insider threat detectors under new conditions.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"26 1","pages":"2579-2586"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Different variations in deployment environments of machine learning techniques may affect the performance of the implemented systems. The variations may cause changes in the data for machine learning solutions, such as in the number of classes and the extracted features. This paper investigates the capabilities of Genetic Programming (GP) for malicious insider detection in corporate environments under such changes. Assuming a Linear GP detector, techniques are introduced to allow a previously trained GP population to adapt to different changes in the data. The experiments and evaluation results show promising insider threat detection performances of the techniques in comparison with training machine learning classifiers from scratch. This reduces the amount of data needed and computation requirements for obtaining dependable insider threat detectors under new conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应遗传规划的动态内部威胁检测
机器学习技术部署环境的不同变化可能会影响所实现系统的性能。这些变化可能会导致机器学习解决方案的数据发生变化,例如类的数量和提取的特征。本文研究了遗传规划(GP)在这种变化下的企业环境中恶意内部检测的能力。假设线性GP检测器,引入技术,允许先前训练过的GP种群适应数据的不同变化。实验和评估结果表明,与从头开始训练机器学习分类器相比,该技术具有良好的内部威胁检测性能。这减少了在新条件下获得可靠的内部威胁检测器所需的数据量和计算需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1