Combined effects of biochar addition with varied particle size and temperature on the decomposition of soil organic carbon in a temperate forest, China
Qinghai Chen, Baoxian Tao, Y. Jiang, Jingdong Wang, Baohua Zhang
{"title":"Combined effects of biochar addition with varied particle size and temperature on the decomposition of soil organic carbon in a temperate forest, China","authors":"Qinghai Chen, Baoxian Tao, Y. Jiang, Jingdong Wang, Baohua Zhang","doi":"10.1080/00380768.2022.2129443","DOIUrl":null,"url":null,"abstract":"ABSTRACT The particle size of biochar is a vital parameter adjusting the soil CO2 production, whereas the effect of biochar addition with different particle sizeon soil CO2 production is still largely unclear. Furthermore, combined effects of biochar addition and temperature on CO2 production are still unknown. To address this gap, a series of incubation experiments were conducted to examine the single and interactive effects of biochar addition with three particle sizes (1–0.5 mm, 0.5–0.1 mm, and <0.1 mm) and temperature on CO2 production in a temperate forest, China. The soil samples were collected from a poplar (Populus nigra) forest in the sandy area of the ancient Yellow River in western Shandong Province, China. Cumulative CO2 production of fine-grained biochar addition (<0.1 mm) was 88.13–92.67% of that of coarse-grained biochar (1–0.5 mm). The addition of fine-grained biochar decreased CO2 production by reducing soil nitrogen availability (i.e., nitrate and ammonium) and increasing soil pH compared to the coarse-grained biochar. Biochar addition promoted the temperature sensitivity (Q 10) of CO2 production by increasing the relative abundance of recalcitrant carbon fractions. Interactive effects of biochar addition and increasing temperature was synergistic due to the raising Q 10 value of CO2 production. Our results highlight the importance of particle size of biochar on CO2 production, less particle size of biochar, the less CO2 production. We suggest that the simultaneous effect of biochar addition and temperature on CO2 production may be underestimated basing on their single effects. Our results suggest that <0.1 mm is a threshold value of biochar particle size that is helpful to soil carbon sequestration.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":"38 1","pages":"45 - 53"},"PeriodicalIF":1.9000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/00380768.2022.2129443","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT The particle size of biochar is a vital parameter adjusting the soil CO2 production, whereas the effect of biochar addition with different particle sizeon soil CO2 production is still largely unclear. Furthermore, combined effects of biochar addition and temperature on CO2 production are still unknown. To address this gap, a series of incubation experiments were conducted to examine the single and interactive effects of biochar addition with three particle sizes (1–0.5 mm, 0.5–0.1 mm, and <0.1 mm) and temperature on CO2 production in a temperate forest, China. The soil samples were collected from a poplar (Populus nigra) forest in the sandy area of the ancient Yellow River in western Shandong Province, China. Cumulative CO2 production of fine-grained biochar addition (<0.1 mm) was 88.13–92.67% of that of coarse-grained biochar (1–0.5 mm). The addition of fine-grained biochar decreased CO2 production by reducing soil nitrogen availability (i.e., nitrate and ammonium) and increasing soil pH compared to the coarse-grained biochar. Biochar addition promoted the temperature sensitivity (Q 10) of CO2 production by increasing the relative abundance of recalcitrant carbon fractions. Interactive effects of biochar addition and increasing temperature was synergistic due to the raising Q 10 value of CO2 production. Our results highlight the importance of particle size of biochar on CO2 production, less particle size of biochar, the less CO2 production. We suggest that the simultaneous effect of biochar addition and temperature on CO2 production may be underestimated basing on their single effects. Our results suggest that <0.1 mm is a threshold value of biochar particle size that is helpful to soil carbon sequestration.
期刊介绍:
Soil Science and Plant Nutrition is the official English journal of the Japanese Society of Soil Science and Plant Nutrition (JSSSPN), and publishes original research and reviews in soil physics, chemistry and mineralogy; soil biology; plant nutrition; soil genesis, classification and survey; soil fertility; fertilizers and soil amendments; environment; socio cultural soil science. The Journal publishes full length papers, short papers, and reviews.