Sravani Konda, Dunni Aribuki, Weiqun Zhang, K. Gott, C. Lishka
{"title":"Experiences Supporting DPC++ in AMReX","authors":"Sravani Konda, Dunni Aribuki, Weiqun Zhang, K. Gott, C. Lishka","doi":"10.1145/3456669.3456673","DOIUrl":null,"url":null,"abstract":"AMReX is a software framework for massively parallel, block-structured adaptive mesh refinement (AMR) applications. AMReX is developed as part of the United States Department Of Energy’s Exascale Computing Project (ECP). Besides AMR capabilities, AMReX also provides a parallel programming framework for numerous applications including six ECP projects, and it implements several backends for CPU-GPU heterogeneous computing. In this talk, we present our experiences supporting DPC++, a language based on the SYCL specification as a backend for AMReX. We will demonstrate how AMReX provides an abstraction layer for its users so that they can write performance portable code for a variety of heterogeneous platforms. We will discuss key DPC++ features that allow AMReX to implement the abstractions and our contributions to the oneAPI specification and Intel’s implementation. We will also highlight some features missing in SYCL/DPC++ that limits its efficiency and our future plans.","PeriodicalId":73497,"journal":{"name":"International Workshop on OpenCL","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on OpenCL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3456669.3456673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
AMReX is a software framework for massively parallel, block-structured adaptive mesh refinement (AMR) applications. AMReX is developed as part of the United States Department Of Energy’s Exascale Computing Project (ECP). Besides AMR capabilities, AMReX also provides a parallel programming framework for numerous applications including six ECP projects, and it implements several backends for CPU-GPU heterogeneous computing. In this talk, we present our experiences supporting DPC++, a language based on the SYCL specification as a backend for AMReX. We will demonstrate how AMReX provides an abstraction layer for its users so that they can write performance portable code for a variety of heterogeneous platforms. We will discuss key DPC++ features that allow AMReX to implement the abstractions and our contributions to the oneAPI specification and Intel’s implementation. We will also highlight some features missing in SYCL/DPC++ that limits its efficiency and our future plans.