{"title":"DUAL-SCALE CNN ARCHITECTURE FOR COVID-19 DETECTION FROM LUNG CT IMAGES","authors":"Alka Singh, V. Gopi, Anju Thomas, Omkar Singh","doi":"10.4015/s1016237223500126","DOIUrl":null,"url":null,"abstract":"Coronavirus Disease 2019 (COVID-19) is a terrible illness affecting the respiratory systems of animals and humans. By 2020, this sickness had become a pandemic, affecting millions worldwide. Prevention of the spread of the virus by conducting fast tests for many suspects has become difficult. Recently, many deep learning-based methods have been developed to automatically detect COVID-19 infection from lung Computed Tomography (CT) images of the chest. This paper proposes a novel dual-scale Convolutional Neural Network (CNN) architecture to detect COVID-19 from CT images. The network consists of two different convolutional blocks. Each path is similarly constructed with multi-scale feature extraction layers. The primary path consists of six convolutional layers. The extracted features from multipath networks are flattened with the help of dropout, and these relevant features are concatenated. The sigmoid function is used as the classifier to identify whether the input image is diseased. The proposed network obtained an accuracy of 99.19%, with an Area Under the Curve (AUC) value of 0.99. The proposed network has a lower computational cost than the existing methods regarding learnable parameters, the number of FLOPS, and memory requirements. The proposed CNN model inherits the benefits of densely linked paths and residuals by utilizing effective feature reuse methods. According to our experiments, the proposed approach outperforms previous algorithms and achieves state-of-the-art results.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"45 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Coronavirus Disease 2019 (COVID-19) is a terrible illness affecting the respiratory systems of animals and humans. By 2020, this sickness had become a pandemic, affecting millions worldwide. Prevention of the spread of the virus by conducting fast tests for many suspects has become difficult. Recently, many deep learning-based methods have been developed to automatically detect COVID-19 infection from lung Computed Tomography (CT) images of the chest. This paper proposes a novel dual-scale Convolutional Neural Network (CNN) architecture to detect COVID-19 from CT images. The network consists of two different convolutional blocks. Each path is similarly constructed with multi-scale feature extraction layers. The primary path consists of six convolutional layers. The extracted features from multipath networks are flattened with the help of dropout, and these relevant features are concatenated. The sigmoid function is used as the classifier to identify whether the input image is diseased. The proposed network obtained an accuracy of 99.19%, with an Area Under the Curve (AUC) value of 0.99. The proposed network has a lower computational cost than the existing methods regarding learnable parameters, the number of FLOPS, and memory requirements. The proposed CNN model inherits the benefits of densely linked paths and residuals by utilizing effective feature reuse methods. According to our experiments, the proposed approach outperforms previous algorithms and achieves state-of-the-art results.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.