Artificial neural network method for predicting protein secondary structure content

Yu-Dong Cai , Xiao-Jun Liu , Xue-biao Xu , Kuo-Chen Chou
{"title":"Artificial neural network method for predicting protein secondary structure content","authors":"Yu-Dong Cai ,&nbsp;Xiao-Jun Liu ,&nbsp;Xue-biao Xu ,&nbsp;Kuo-Chen Chou","doi":"10.1016/S0097-8485(01)00125-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the neural network method was applied to predict the content of protein secondary structure elements that was based on ‘pair-coupled amino acid composition’, in which the sequence coupling effects are explicitly included through a series of conditional probability elements. The prediction was examined by a self-consistency test and an independent-dataset. Both indicated good results obtained when using the neural network method to predict the contents of α-helix, β-sheet, parallel β-sheet strand, antiparallel β-sheet strand, β-bridge, 3<sub>10</sub>-helix, π-helix, H-bonded turn, bend, and random coil.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 4","pages":"Pages 347-350"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00125-5","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848501001255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper, the neural network method was applied to predict the content of protein secondary structure elements that was based on ‘pair-coupled amino acid composition’, in which the sequence coupling effects are explicitly included through a series of conditional probability elements. The prediction was examined by a self-consistency test and an independent-dataset. Both indicated good results obtained when using the neural network method to predict the contents of α-helix, β-sheet, parallel β-sheet strand, antiparallel β-sheet strand, β-bridge, 310-helix, π-helix, H-bonded turn, bend, and random coil.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测蛋白质二级结构含量的人工神经网络方法
本文采用神经网络方法预测基于“对偶氨基酸组成”的蛋白质二级结构元素含量,其中序列耦合效应通过一系列条件概率元素显式包含。该预测通过自一致性测试和独立数据集进行检验。用神经网络方法预测α-螺旋、β-片、平行β-片、反平行β-片、β-桥、310-螺旋、π-螺旋、h键旋转、弯曲和随机线圈的含量,均取得了较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instructions to authors Author Index Keyword Index Volume contents New molecular surface-based 3D-QSAR method using Kohonen neural network and 3-way PLS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1