Independent Component Analysis and Rough Fuzzy based Approach to Web Usage Mining

S. Chimphlee, N. Salim, M. Ngadiman, W. Chimphlee, Surat Srinoy
{"title":"Independent Component Analysis and Rough Fuzzy based Approach to Web Usage Mining","authors":"S. Chimphlee, N. Salim, M. Ngadiman, W. Chimphlee, Surat Srinoy","doi":"10.5555/1166890.1166962","DOIUrl":null,"url":null,"abstract":"Web Usage Mining is that area of Web Mining which deals with the extraction of interesting knowledge from logging information produced by Web servers. A challenge in web classification is how to deal with the high dimensionality of the feature space. In this paper we present Independent Component Analysis (ICA) for feature selection and using Rough Fuzzy for clustering web user sessions. It aims at discovery of trends and regularities in web users' access patterns. ICA is a very general-purpose statistical technique in which observed random data are linearly transformed into components that are maximally independent from each other, and simultaneously have \"interesting\" distributions. Our experiments indicate can improve the predictive performance when the original feature set for representing web log is large and can handling the different groups of uncertainties/impreciseness accuracy.","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"78 1","pages":"422-427"},"PeriodicalIF":0.0000,"publicationDate":"2006-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1166890.1166962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Web Usage Mining is that area of Web Mining which deals with the extraction of interesting knowledge from logging information produced by Web servers. A challenge in web classification is how to deal with the high dimensionality of the feature space. In this paper we present Independent Component Analysis (ICA) for feature selection and using Rough Fuzzy for clustering web user sessions. It aims at discovery of trends and regularities in web users' access patterns. ICA is a very general-purpose statistical technique in which observed random data are linearly transformed into components that are maximally independent from each other, and simultaneously have "interesting" distributions. Our experiments indicate can improve the predictive performance when the original feature set for representing web log is large and can handling the different groups of uncertainties/impreciseness accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于独立成分分析和粗糙模糊的Web使用挖掘方法
Web用法挖掘是Web挖掘的一个领域,它处理从Web服务器产生的日志信息中提取有趣的知识。如何处理特征空间的高维性是web分类的一个挑战。在本文中,我们提出了独立成分分析(ICA)的特征选择和使用粗糙模糊聚类的web用户会话。它旨在发现网络用户访问模式的趋势和规律。ICA是一种非常通用的统计技术,其中观察到的随机数据被线性转换成最大程度上相互独立的组件,同时具有“有趣的”分布。实验表明,在原始特征集较大的情况下,该方法可以提高web日志的预测性能,并且可以准确地处理不同组的不确定性/不精确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Methodology of Measurement Intellectualization based on Regularized Bayesian Approach in Uncertain Conditions Stochastic Dual Coordinate Ascent for Learning Sign Constrained Linear Predictors Data Smoothing Filling Method based on ScRNA-Seq Data Zero-Value Identification Batch-Stochastic Sub-Gradient Method for Solving Non-Smooth Convex Loss Function Problems Teaching Reading Skills More Effectively
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1