Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL 物理化学学报 Pub Date : 2024-03-01 DOI:10.3866/PKU.WHXB202305040
Zeyu Liu , Wenze Huang , Yang Xiao , Jundong Zhang , Weijin Kong , Peng Wu , Chenzi Zhao , Aibing Chen , Qiang Zhang
{"title":"Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries","authors":"Zeyu Liu ,&nbsp;Wenze Huang ,&nbsp;Yang Xiao ,&nbsp;Jundong Zhang ,&nbsp;Weijin Kong ,&nbsp;Peng Wu ,&nbsp;Chenzi Zhao ,&nbsp;Aibing Chen ,&nbsp;Qiang Zhang","doi":"10.3866/PKU.WHXB202305040","DOIUrl":null,"url":null,"abstract":"<div><div>The anode-free solid-state lithium battery (AFSSLB) is a type of lithium battery that utilizes an initial charging process to generate lithium metal as the anode. With a 1 : 1 anode-to-cathode capacity ratio, it enables any lithiated cathode system to achieve a maximal energy density. Furthermore, the incorporation of inorganic solid electrolytes in the AFSSLB greatly enhances its intrinsic safety. However, the AFSSLB faces challenges related to interfacial issues between the electrolyte and collector. During the cycling process, uneven lithium-ion flux can result in contact loss and dendrite growth, ultimately leading to rapid battery failure. Addressing these interfacial problems is crucial for the successful implementation and performance of AFSSLBs. The absence of initial lithium metal material prevents the battery system from accommodating additional lithium through a modified anode. Instead, it relies on high Coulomb efficiency during cycling. Consequently, ensuring continuous and uniform contact at the anode interface is crucial for maintaining the reversibility of lithium deposition. Herein, a nanocomposite current collector is introduced to enhance the interface between the collector and electrolyte in AFSSLB. In this approach, silver nanoparticles are dispersed within the carbon materials to construct a composite current collector. The incorporation of the silver-carbon nanocomposite layer results in a low interfacial impedance of 10 Ω∙cm<sup>−2</sup>, indicating that the electrolyte-collector interface maintains contact throughout the charging and discharging processes. The focused ion beam (FIB) technology and electron microscopy were employed to analyze the battery cross sections, revealing that lithium metal could be deposited in a thickness of more than 25 μm without short-circuiting using this silver-carbon nanocomposite current collector. The solid-state batteries equipped with nanocomposite current collectors exhibited an enhanced dissolution of silver in the lithium metal, leading to the formation of abundant lithiophilic sites. The nanocomposites facilitate the rapid transfer of Li atoms within the anodes, thus achieving uniform lithium metal deposition. Theoretical analysis using the nucleation equation demonstrates that using nano-silver as a current collector can reduce the nucleation work required for deposition by at least four orders of magnitude. The smaller nucleation force contributes to the uniform and stable deposition of lithium metal during continuous cycling. The solid-state batteries demonstrated improved interfacial contact, resulting in the uniform and stable lithium metal deposition of over 7.0 mAh∙cm<sup>−2</sup> for more than 200 cycles at 0.25 mA∙cm<sup>−2</sup>. The cycling performances of all-solidstate batteries can be significantly improved through the design of nanocomposite collectors. This presents an effective strategy for advancing the practical implementation of all-solid-state lithium metal batteries, particularly those utilizing an anode-free configuration.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (45KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 3","pages":"Article 2305040"},"PeriodicalIF":10.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824000730","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The anode-free solid-state lithium battery (AFSSLB) is a type of lithium battery that utilizes an initial charging process to generate lithium metal as the anode. With a 1 : 1 anode-to-cathode capacity ratio, it enables any lithiated cathode system to achieve a maximal energy density. Furthermore, the incorporation of inorganic solid electrolytes in the AFSSLB greatly enhances its intrinsic safety. However, the AFSSLB faces challenges related to interfacial issues between the electrolyte and collector. During the cycling process, uneven lithium-ion flux can result in contact loss and dendrite growth, ultimately leading to rapid battery failure. Addressing these interfacial problems is crucial for the successful implementation and performance of AFSSLBs. The absence of initial lithium metal material prevents the battery system from accommodating additional lithium through a modified anode. Instead, it relies on high Coulomb efficiency during cycling. Consequently, ensuring continuous and uniform contact at the anode interface is crucial for maintaining the reversibility of lithium deposition. Herein, a nanocomposite current collector is introduced to enhance the interface between the collector and electrolyte in AFSSLB. In this approach, silver nanoparticles are dispersed within the carbon materials to construct a composite current collector. The incorporation of the silver-carbon nanocomposite layer results in a low interfacial impedance of 10 Ω∙cm−2, indicating that the electrolyte-collector interface maintains contact throughout the charging and discharging processes. The focused ion beam (FIB) technology and electron microscopy were employed to analyze the battery cross sections, revealing that lithium metal could be deposited in a thickness of more than 25 μm without short-circuiting using this silver-carbon nanocomposite current collector. The solid-state batteries equipped with nanocomposite current collectors exhibited an enhanced dissolution of silver in the lithium metal, leading to the formation of abundant lithiophilic sites. The nanocomposites facilitate the rapid transfer of Li atoms within the anodes, thus achieving uniform lithium metal deposition. Theoretical analysis using the nucleation equation demonstrates that using nano-silver as a current collector can reduce the nucleation work required for deposition by at least four orders of magnitude. The smaller nucleation force contributes to the uniform and stable deposition of lithium metal during continuous cycling. The solid-state batteries demonstrated improved interfacial contact, resulting in the uniform and stable lithium metal deposition of over 7.0 mAh∙cm−2 for more than 200 cycles at 0.25 mA∙cm−2. The cycling performances of all-solidstate batteries can be significantly improved through the design of nanocomposite collectors. This presents an effective strategy for advancing the practical implementation of all-solid-state lithium metal batteries, particularly those utilizing an anode-free configuration.
  1. Download: Download high-res image (45KB)
  2. Download: Download full-size image
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无阳极全固态锂电池的纳米复合集流器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
期刊最新文献
Experimental and theoretical investigations of solvent polarity effect on ESIPT mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone Recent advances of functional nanomaterials for screen-printed photoelectrochemical biosensors Engineering multiple optimization strategy on bismuth oxyhalide photoactive materials for efficient photoelectrochemical applications Machine learning enables the prediction of amide bond synthesis based on small datasets Noise reduction of nuclear magnetic resonance spectroscopy using lightweight deep neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1