Mechanical Evaluation of Selective Laser Melted Ni-Rich NiTi: Compression, Tension, and Torsion

K. S. Baghbaderani, M. Nematollahi, Parisa Bayatimalayeri, Hediyeh Dabbaghi, Ahmadreza Jahadakbar, M. Elahinia
{"title":"Mechanical Evaluation of Selective Laser Melted Ni-Rich NiTi: Compression, Tension, and Torsion","authors":"K. S. Baghbaderani, M. Nematollahi, Parisa Bayatimalayeri, Hediyeh Dabbaghi, Ahmadreza Jahadakbar, M. Elahinia","doi":"10.1115/MSEC2020-8432","DOIUrl":null,"url":null,"abstract":"Two unique behaviors of superelasticity and shape memory effect have made shape memory alloy such as NiTi, an interesting alloy for different applications. Recently, additive manufacturing (AM) as a powerful tool for fabricating NiTi has become of interest to make complex geometries. Selective laser melting (SLM) is an AM method that not only provides flexibility to make complex 3D shapes but also it can be possible to tailor the thermomechanical properties of the parts just by changing the process parameters. The non-homogeneous microstructure of as-fabricated parts as well as asymmetric mechanical behavior of NiTi, make it important to study the properties of SLM NiTi parts under different loading condition. In this study, Ni50.8Ti (at. %) powder was utilized to fabricate cube, dog-bone, and tube by SLM technique. The transformation temperatures (TTs) of samples were measured by the differential scanning calorimetry (DSC) method and the variation of TTs was discussed. Three coupons were tested mechanically under compression, tension, and torsion. In-situ digital image correlation (DIC) was employed to measure and monitor the strain field of samples during the mechanical tests. The strain distribution showed localized strain for all three samples. The equivalent stress/strain was calculated to compare the result of compressive, tensile, and torsional responses and the significant asymmetric behavior was shown and discussed.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/MSEC2020-8432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Two unique behaviors of superelasticity and shape memory effect have made shape memory alloy such as NiTi, an interesting alloy for different applications. Recently, additive manufacturing (AM) as a powerful tool for fabricating NiTi has become of interest to make complex geometries. Selective laser melting (SLM) is an AM method that not only provides flexibility to make complex 3D shapes but also it can be possible to tailor the thermomechanical properties of the parts just by changing the process parameters. The non-homogeneous microstructure of as-fabricated parts as well as asymmetric mechanical behavior of NiTi, make it important to study the properties of SLM NiTi parts under different loading condition. In this study, Ni50.8Ti (at. %) powder was utilized to fabricate cube, dog-bone, and tube by SLM technique. The transformation temperatures (TTs) of samples were measured by the differential scanning calorimetry (DSC) method and the variation of TTs was discussed. Three coupons were tested mechanically under compression, tension, and torsion. In-situ digital image correlation (DIC) was employed to measure and monitor the strain field of samples during the mechanical tests. The strain distribution showed localized strain for all three samples. The equivalent stress/strain was calculated to compare the result of compressive, tensile, and torsional responses and the significant asymmetric behavior was shown and discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择性激光熔化富镍NiTi的力学评价:压缩、拉伸和扭转
镍钛等形状记忆合金具有超弹性和形状记忆两种独特的性能,是一种具有广泛应用前景的合金。最近,增材制造(AM)作为制造NiTi的强大工具已成为制造复杂几何形状的兴趣。选择性激光熔化(SLM)是一种增材制造方法,它不仅提供了制造复杂3D形状的灵活性,而且可以通过改变工艺参数来定制零件的热机械性能。由于成形件的非均匀组织和NiTi的非对称力学行为,使得研究SLM NiTi零件在不同加载条件下的性能具有重要意义。在本研究中,Ni50.8Ti (at。采用SLM法制备立方体、狗骨和管。用差示扫描量热法测定了样品的相变温度,并讨论了相变温度的变化规律。在压缩、拉伸和扭转条件下对三张票进行机械测试。采用原位数字图像相关(DIC)技术对试件在力学试验过程中的应变场进行测量和监测。三种样品的应变分布均表现为局部应变。计算等效应力/应变以比较压缩、拉伸和扭转响应的结果,并显示和讨论了显著的不对称行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance photonic microwave filters based on a 50GHz FSR optical soliton crystal Kerr micro-comb Ultra-high bandwidth fiber-optic data transmission with a single chip source High order pulse-echo (HOPE) ultrasound Data-driven modelling of scalable spinodoid structures for energy absorption Radioplasmonics: design of plasmonic milli-particles in air and absorbing media for antenna communication and human-body in-vivo applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1