Optimal Permutation Estimation in CrowdSourcing problems

Emmanuel Pilliat, A. Carpentier, N. Verzelen
{"title":"Optimal Permutation Estimation in CrowdSourcing problems","authors":"Emmanuel Pilliat, A. Carpentier, N. Verzelen","doi":"10.1214/23-aos2271","DOIUrl":null,"url":null,"abstract":"Motivated by crowd-sourcing applications, we consider a model where we have partial observations from a bivariate isotonic n x d matrix with an unknown permutation $\\pi$ * acting on its rows. Focusing on the twin problems of recovering the permutation $\\pi$ * and estimating the unknown matrix, we introduce a polynomial-time procedure achieving the minimax risk for these two problems, this for all possible values of n, d, and all possible sampling efforts. Along the way, we establish that, in some regimes, recovering the unknown permutation $\\pi$ * is considerably simpler than estimating the matrix.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aos2271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Motivated by crowd-sourcing applications, we consider a model where we have partial observations from a bivariate isotonic n x d matrix with an unknown permutation $\pi$ * acting on its rows. Focusing on the twin problems of recovering the permutation $\pi$ * and estimating the unknown matrix, we introduce a polynomial-time procedure achieving the minimax risk for these two problems, this for all possible values of n, d, and all possible sampling efforts. Along the way, we establish that, in some regimes, recovering the unknown permutation $\pi$ * is considerably simpler than estimating the matrix.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
众包问题中的最优排列估计
受众包应用程序的激励,我们考虑一个模型,其中我们有来自二元等渗n x d矩阵的部分观测值,该矩阵具有未知排列$\pi$ *作用于其行。关注恢复排列$\pi$ *和估计未知矩阵的孪生问题,我们引入了一个多项式时间过程来实现这两个问题的最小最大风险,这适用于所有可能的n, d值和所有可能的采样努力。在此过程中,我们建立了,在某些情况下,恢复未知的排列$\pi$ *比估计矩阵要简单得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum likelihood for high-noise group orbit estimation and single-particle cryo-EM Local Whittle estimation of high-dimensional long-run variance and precision matrices Efficient estimation of the maximal association between multiple predictors and a survival outcome The impacts of unobserved covariates on covariate-adaptive randomized experiments Estimation of expected Euler characteristic curves of nonstationary smooth random fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1