A Wrapper for Automatic Measurements with YouTube's Native Android App

Michael Seufert, Bernd Zeidler, Florian Wamser, Theodoros Karagkioules, D. Tsilimantos, Frank Loh, P. Tran-Gia, S. Valentin
{"title":"A Wrapper for Automatic Measurements with YouTube's Native Android App","authors":"Michael Seufert, Bernd Zeidler, Florian Wamser, Theodoros Karagkioules, D. Tsilimantos, Frank Loh, P. Tran-Gia, S. Valentin","doi":"10.23919/TMA.2018.8506488","DOIUrl":null,"url":null,"abstract":"YouTube is one of the most popular and demanding services in the Internet today. Thereby, a large portion of this traffic is generated by YouTube's mobile app. While past studies have shown how to monitor browser-based streaming on desktop PCs (e.g., YoMo) or mobile devices (e.g., YoMoApp), streaming in the native app has not been monitored yet. This paper presents an automated framework for monitoring the streaming in YouTube's native app for Android. The concept is based on a wrapper application and the Android Debug Bridge (adb), and can be also extended to automatic measurements with other apps. For YouTube, it allows to collect application-layer streaming data, such as current playtime, buffered playtime, video encoding, and quality switches. These data can be complemented with network measurements on the mobile access link to obtain a holistic view on mobile YouTube streaming on Android devices. In addition to describing the software design and testbed setup, this paper discusses an experimental measurement. This study analyzes the streaming in the native YouTube app and compares it to the streaming from the mobile YouTube website via YoMoApp.","PeriodicalId":6607,"journal":{"name":"2018 Network Traffic Measurement and Analysis Conference (TMA)","volume":"39 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Network Traffic Measurement and Analysis Conference (TMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/TMA.2018.8506488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

YouTube is one of the most popular and demanding services in the Internet today. Thereby, a large portion of this traffic is generated by YouTube's mobile app. While past studies have shown how to monitor browser-based streaming on desktop PCs (e.g., YoMo) or mobile devices (e.g., YoMoApp), streaming in the native app has not been monitored yet. This paper presents an automated framework for monitoring the streaming in YouTube's native app for Android. The concept is based on a wrapper application and the Android Debug Bridge (adb), and can be also extended to automatic measurements with other apps. For YouTube, it allows to collect application-layer streaming data, such as current playtime, buffered playtime, video encoding, and quality switches. These data can be complemented with network measurements on the mobile access link to obtain a holistic view on mobile YouTube streaming on Android devices. In addition to describing the software design and testbed setup, this paper discusses an experimental measurement. This study analyzes the streaming in the native YouTube app and compares it to the streaming from the mobile YouTube website via YoMoApp.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
YouTube原生Android应用程序自动测量的包装器
YouTube是当今互联网上最受欢迎和要求最高的服务之一。因此,很大一部分流量是由YouTube的移动应用产生的。虽然过去的研究已经展示了如何监控桌面电脑(如YoMo)或移动设备(如YoMoApp)上基于浏览器的流媒体,但原生应用中的流媒体尚未受到监控。本文提出了一个用于监控YouTube原生Android应用中的流媒体的自动化框架。这个概念是基于一个包装器应用程序和Android调试桥(adb),也可以扩展到与其他应用程序的自动测量。对于YouTube,它允许收集应用层流数据,如当前播放时间,缓冲播放时间,视频编码和质量开关。这些数据可以与移动接入链路上的网络测量相补充,以获得Android设备上移动YouTube流媒体的整体视图。本文除了描述了软件设计和试验台设置外,还讨论了实验测量。本研究分析了原生YouTube应用程序中的流媒体,并将其与通过YoMoApp从移动YouTube网站进行的流媒体进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Analysis of Network Measurements Through Machine Learning: The Power of the Crowd App for Dynamic Crowdsourced QoE Studies of HTTP Adaptive Streaming on Mobile Devices Dmap: Automating Domain Name Ecosystem Measurements and Applications Anycaston the Move: A Look at Mobile Anycast Performance A Second Screen Journey to the Cup: Twitter Dynamics During the Stanley Cup Playoffs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1