Quad-splitting algorithm for a window query on a Hilbert curve

Chen-Chang Wu, Ye-In Chang
{"title":"Quad-splitting algorithm for a window query on a Hilbert curve","authors":"Chen-Chang Wu, Ye-In Chang","doi":"10.1049/IET-IPR.2008.0155","DOIUrl":null,"url":null,"abstract":"Space-filling curves, particularly, Hilbert curves, have been extensively used to maintain spatial locality of multi-dimensional data in a wide variety of applications. A window query is an important query operation in spatial (image) databases. Given a Hilbert curve, a window query reports its corresponding orders without the need to decode all the points inside this window into the corresponding Hilbert orders. Given a query window of size p times q on a Hilbert curve of size T times T , Chung et al. have proposed an algorithm for decomposing a window into the corresponding Hilbert orders, which needs O ( n log T ) time, where n = max ( p , q ). By employing the properties of Hilbert curves, the authors present an efficient algorithm, named as Quad-Splitting, for decomposing a window into the corresponding Hilbert orders on a Hilbert curve without individual sorting and merging steps. Although the proposed algorithm also takes O ( n log T ) time, it does not perform individual sorting and merging steps which are needed in Chung et al. 's algorithm. Therefore experimental results show that the Quad-Splitting algorithm outperforms Chung et al. 's algorithm.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"17 1","pages":"299-311"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IET-IPR.2008.0155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Space-filling curves, particularly, Hilbert curves, have been extensively used to maintain spatial locality of multi-dimensional data in a wide variety of applications. A window query is an important query operation in spatial (image) databases. Given a Hilbert curve, a window query reports its corresponding orders without the need to decode all the points inside this window into the corresponding Hilbert orders. Given a query window of size p times q on a Hilbert curve of size T times T , Chung et al. have proposed an algorithm for decomposing a window into the corresponding Hilbert orders, which needs O ( n log T ) time, where n = max ( p , q ). By employing the properties of Hilbert curves, the authors present an efficient algorithm, named as Quad-Splitting, for decomposing a window into the corresponding Hilbert orders on a Hilbert curve without individual sorting and merging steps. Although the proposed algorithm also takes O ( n log T ) time, it does not perform individual sorting and merging steps which are needed in Chung et al. 's algorithm. Therefore experimental results show that the Quad-Splitting algorithm outperforms Chung et al. 's algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
希尔伯特曲线上窗口查询的四分割算法
空间填充曲线,特别是希尔伯特曲线,在各种应用中被广泛用于保持多维数据的空间局部性。窗口查询是空间(图像)数据库中一个重要的查询操作。给定一条希尔伯特曲线,窗口查询报告其相应的阶数,而不需要将窗口内的所有点解码为相应的希尔伯特阶数。给定大小为T * T的Hilbert曲线上大小为p * q的查询窗口,Chung等人提出了一种将窗口分解为相应的Hilbert阶的算法,该算法需要O (n log T)时间,其中n = max (p, q)。利用希尔伯特曲线的性质,作者提出了一种有效的算法,称为四分法,该算法将一个窗口分解为希尔伯特曲线上相应的希尔伯特阶,而不需要单独的排序和合并步骤。虽然所提出的算法也需要O (n log T)的时间,但它不执行Chung等人所需要的单独排序和合并步骤。的算法。因此,实验结果表明,四分频算法优于Chung等人。的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mask-Guided Image Person Removal with Data Synthesis EDAfuse: A encoder-decoder with atrous spatial pyramid network for infrared and visible image fusion Visible part prediction and temporal calibration for pedestrian detection STDC-MA Network for Semantic Segmentation Multi-similarity based Hyperrelation Network for few-shot segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1