A More Efficient Iterative Learning Control for Anaerobic Digestion Process Set Point Tracking

Xiangjie Liu, Huimin Xu, Xuedong Zhang
{"title":"A More Efficient Iterative Learning Control for Anaerobic Digestion Process Set Point Tracking","authors":"Xiangjie Liu, Huimin Xu, Xuedong Zhang","doi":"10.1109/IHMSC.2015.136","DOIUrl":null,"url":null,"abstract":"To improve accuracy and efficiency of the set value tracking in anaerobic digestion process for wastewater treatment, a fast and high accurate ILC algorithm-closed loop iterative learning control is proposed. The introduced ILC utilizes m-accretive mapping theory to ensure the uniqueness of desired control input and a rigorous mathematical proof guarantees convergence of tracking error, at the same time the effectiveness of the proposed method is presented by simulations.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"107 1","pages":"468-471"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To improve accuracy and efficiency of the set value tracking in anaerobic digestion process for wastewater treatment, a fast and high accurate ILC algorithm-closed loop iterative learning control is proposed. The introduced ILC utilizes m-accretive mapping theory to ensure the uniqueness of desired control input and a rigorous mathematical proof guarantees convergence of tracking error, at the same time the effectiveness of the proposed method is presented by simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
厌氧消化过程设定点跟踪中一种更有效的迭代学习控制
为了提高废水厌氧消化过程设定值跟踪的准确性和效率,提出了一种快速、高精度的ILC算法-闭环迭代学习控制。引入的ILC利用m-增生映射理论保证了期望控制输入的唯一性,并通过严格的数学证明保证了跟踪误差的收敛性,同时通过仿真验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Algorithm for Mining Maximal Frequent Patterns over Data Streams Analysis of Structural Parameters of Metal Multi-convolution Ring Effects of the Plasma Frequency and the Collision Frequency on the Performance of a Smart Plasma Antenna An Efficient Data Transmission Strategy for Cyber-Physical Systems in the Complicated Environment A Multi-objective Optimization Decision Model Assisting the Land-Use Spatial Districting under Hard Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1