Reduction techniques for efficient behavioral model checking in adaptive case management

Christoph Czepa, Huy Tran, Uwe Zdun, T. Tran, E. Weiss, C. Ruhsam
{"title":"Reduction techniques for efficient behavioral model checking in adaptive case management","authors":"Christoph Czepa, Huy Tran, Uwe Zdun, T. Tran, E. Weiss, C. Ruhsam","doi":"10.1145/3019612.3019617","DOIUrl":null,"url":null,"abstract":"Case models in Adaptive Case Management (ACM) are business process models ranging from unstructured over semi-structured to structured process models. Due to this versatility, both industry and academia show growing interest in this approach. This paper discusses a model checking approach for the behavioral verification of ACM case models. To counteract the high computational demands of model checking techniques, our approach includes state space reduction techniques as a preprocessing step before state-transition system generation. Consequently, the problem size is decreased, which decreases the computational demands needed by the subsequent model checking as well. An evaluation of the approach with a large set of LTL specifications on two real-world case models, which are representative for semi-structured and structured process models and realistic in size, shows an acceptable performance of the proposed approach.","PeriodicalId":20728,"journal":{"name":"Proceedings of the Symposium on Applied Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3019612.3019617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Case models in Adaptive Case Management (ACM) are business process models ranging from unstructured over semi-structured to structured process models. Due to this versatility, both industry and academia show growing interest in this approach. This paper discusses a model checking approach for the behavioral verification of ACM case models. To counteract the high computational demands of model checking techniques, our approach includes state space reduction techniques as a preprocessing step before state-transition system generation. Consequently, the problem size is decreased, which decreases the computational demands needed by the subsequent model checking as well. An evaluation of the approach with a large set of LTL specifications on two real-world case models, which are representative for semi-structured and structured process models and realistic in size, shows an acceptable performance of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应案例管理中高效行为模型检查的约简技术
自适应案例管理(ACM)中的案例模型是业务流程模型,范围从非结构化到半结构化再到结构化流程模型。由于这种多功能性,工业界和学术界都对这种方法表现出越来越大的兴趣。本文讨论了一种用于ACM案例模型行为验证的模型检查方法。为了抵消模型检查技术的高计算需求,我们的方法包括状态空间缩减技术作为状态转换系统生成之前的预处理步骤。因此,问题的大小减小了,这也减少了后续模型检查所需的计算量。在两个实际案例模型上使用大量LTL规范对该方法进行了评估,这两个实际案例模型代表了半结构化和结构化流程模型,并且在大小上切合实际,结果表明所建议的方法具有可接受的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tarski Handling bitcoin conflicts through a glimpse of structure Multi-CNN and decision tree based driving behavior evaluation Session details: WT - web technologies track Improving OR-PCA via smoothed spatially-consistent low-rank modeling for background subtraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1