{"title":"Virtual Reality (VR) for the Support of the Analysis and Operation of a Solar Thermal Tower Power Plant","authors":"Kamran Mahboob, Atif Mahboob, S. Husung","doi":"10.1115/detc2021-70202","DOIUrl":null,"url":null,"abstract":"\n A substantial part of the global energy mix depends upon fossil fuels that needed to be reduced to overcome the pollution and environment-related challenges. This has directed the world to shift the energy mix towards renewable energy technologies. Among the development in renewable energy technologies, the development of solar tower power plant is an active research topic. Over the past decade, advances in computers and simulation software systems have greatly expanded their use in design and development, which can facilitate the engineering activities of solar tower power plants. However, an important limitation is the visualization of three-dimensional geometrical design data onto two-dimensional computer screens. VR technologies are a great means in the visualization of 3D data. Therefore, this article attempts to illustrate a concept for the application of VR technologies in the development of solar tower power plant and lists down relevant support scenarios. The main focus of the paper is on analyzing the efficiency of the VR technology used in the design of solar tower power plants and learning from the experience gained in this process. A discussion about further scenarios ranging from on-site visualization of solar tower power plant infrastructure, installation and repair, cleaning and maintenance, etc. is included as well as future directions are pointed out. The demonstrator part consists of an Android Smartphone-based VR application and an HMD based VR application. Furthermore, a brief comparison of both the applications as well as of HMD and sVR is also provided.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-70202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A substantial part of the global energy mix depends upon fossil fuels that needed to be reduced to overcome the pollution and environment-related challenges. This has directed the world to shift the energy mix towards renewable energy technologies. Among the development in renewable energy technologies, the development of solar tower power plant is an active research topic. Over the past decade, advances in computers and simulation software systems have greatly expanded their use in design and development, which can facilitate the engineering activities of solar tower power plants. However, an important limitation is the visualization of three-dimensional geometrical design data onto two-dimensional computer screens. VR technologies are a great means in the visualization of 3D data. Therefore, this article attempts to illustrate a concept for the application of VR technologies in the development of solar tower power plant and lists down relevant support scenarios. The main focus of the paper is on analyzing the efficiency of the VR technology used in the design of solar tower power plants and learning from the experience gained in this process. A discussion about further scenarios ranging from on-site visualization of solar tower power plant infrastructure, installation and repair, cleaning and maintenance, etc. is included as well as future directions are pointed out. The demonstrator part consists of an Android Smartphone-based VR application and an HMD based VR application. Furthermore, a brief comparison of both the applications as well as of HMD and sVR is also provided.