Highly nonlinear process model using optimal artificial neural network

Peter Karas, S. Kozák
{"title":"Highly nonlinear process model using optimal artificial neural network","authors":"Peter Karas, S. Kozák","doi":"10.1109/CYBERI.2018.8337548","DOIUrl":null,"url":null,"abstract":"The paper deal with modeling of highly nonlinear chemical process using the artificial neural network approach. The non-linear process is represented by polymerization plant. The data set used for an identification of the artificial neural network model is a real input and output data received from an existing polypropylene plant. The identified model is a nonlinear auto regressive neural network with the exogenous input. Performance of a trained network has been verified using the real process data and the ability of the production rate prediction is shown in the case study section. The obtained artificial neural network model is used for predictive control of the polypropylene reactor.","PeriodicalId":6534,"journal":{"name":"2018 Cybernetics & Informatics (K&I)","volume":"69 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Cybernetics & Informatics (K&I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERI.2018.8337548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper deal with modeling of highly nonlinear chemical process using the artificial neural network approach. The non-linear process is represented by polymerization plant. The data set used for an identification of the artificial neural network model is a real input and output data received from an existing polypropylene plant. The identified model is a nonlinear auto regressive neural network with the exogenous input. Performance of a trained network has been verified using the real process data and the ability of the production rate prediction is shown in the case study section. The obtained artificial neural network model is used for predictive control of the polypropylene reactor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用最优人工神经网络建立高度非线性过程模型
本文用人工神经网络方法研究了高度非线性化工过程的建模问题。非线性过程以聚合装置为代表。用于识别人工神经网络模型的数据集是从现有聚丙烯装置接收到的真实输入和输出数据。所识别的模型是一个具有外源输入的非线性自回归神经网络。使用实际过程数据验证了训练网络的性能,并在案例研究部分展示了生产率预测的能力。将得到的人工神经网络模型用于聚丙烯反应器的预测控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Healthcare data classification — Cloud-based architecture concept Comparison of inverted pendulum stabilization with PID, LQ, and MPC control Measuring and diagnostic system of transformers Extending spectrum of filtered controllers for IPDT plant models Accelerated implementation of the power method for analysis of electromagnetic fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1