Object-based differential Localization of Mobile Robots using sparse 2D Lidar Data

Marc Forstenhäusler, M. Karl, K. Dietmayer
{"title":"Object-based differential Localization of Mobile Robots using sparse 2D Lidar Data","authors":"Marc Forstenhäusler, M. Karl, K. Dietmayer","doi":"10.1109/ICAR46387.2019.8981622","DOIUrl":null,"url":null,"abstract":"The highly accurate pose estimation of mobile robots with respect to a known target object is a key technology for autonomous industrial manufacturing processes. Current approaches generally assume that the environment is static and locate the robot in relation to pre-defined positions. This paper presents an implementation and validation of how to localize a mobile robot in relation to the coordinate system of the target object - a prerequisite for any kind of manipulation or interaction. This allows the robot to be localized to arbitrarily positioned objects in the environment. For experimental validation, a high-precision external tracking system is used as ground truth. In this way, objects of different shapes are evaluated from different viewpoints. We achieve a pose estimation accuracy of less than 1 cm in a real world scenario.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"45 1","pages":"598-603"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The highly accurate pose estimation of mobile robots with respect to a known target object is a key technology for autonomous industrial manufacturing processes. Current approaches generally assume that the environment is static and locate the robot in relation to pre-defined positions. This paper presents an implementation and validation of how to localize a mobile robot in relation to the coordinate system of the target object - a prerequisite for any kind of manipulation or interaction. This allows the robot to be localized to arbitrarily positioned objects in the environment. For experimental validation, a high-precision external tracking system is used as ground truth. In this way, objects of different shapes are evaluated from different viewpoints. We achieve a pose estimation accuracy of less than 1 cm in a real world scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏二维激光雷达数据的移动机器人目标差分定位
移动机器人对已知目标物体的高精度姿态估计是自主工业制造过程的关键技术。目前的方法通常假设环境是静态的,并根据预先定义的位置定位机器人。本文介绍了如何根据目标物体的坐标系统对移动机器人进行定位的实现和验证-这是任何类型的操作或交互的先决条件。这使得机器人可以定位到环境中任意位置的物体。为了实验验证,采用高精度外部跟踪系统作为地真值。这样,不同形状的物体就可以从不同的角度进行评价。我们在真实场景中实现了小于1厘米的姿态估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Domain Randomization Techniques for Transfer Learning Robotito: programming robots from preschool to undergraduate school level A Novel Approach for Parameter Extraction of an NMPC-based Visual Follower Model Automated Conflict Resolution of Lane Change Utilizing Probability Collectives Estimating and Localizing External Forces Applied on Flexible Instruments by Shape Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1