Effect of Holding Time on Bonding Strength and Joint Interface Microstructure of Vacuum Diffusion Bonded Dissimilar Austenitic Stainless Steel - Titanium Alloy Joints

A. Negemiya, Tushar Sonar, Rajakumar Selvarajan
{"title":"Effect of Holding Time on Bonding Strength and Joint Interface Microstructure of Vacuum Diffusion Bonded Dissimilar Austenitic Stainless Steel - Titanium Alloy Joints","authors":"A. Negemiya, Tushar Sonar, Rajakumar Selvarajan","doi":"10.37255/jme.v17i2pp073-078","DOIUrl":null,"url":null,"abstract":"In this investigation, the effect of holding time on the microstructure of joint interface and bonding strength of vacuum diffusion bonded dissimilar austenitic stainless (ASS) – titanium (Ti) alloy joints were investigated. The dissimilar joints of ASS - Ti alloy were developed using the holding time of 30, 45, 60, 75 and 90 minutes in a vacuum chamber at a temperature of 900⁰C and pressure of 14 MPa. The bonding strength of ASS – Ti alloy joints was evaluated using the ram tensile test. The microhardness survey was done perpendicular to the joint interface. The microstructure of the joint interface was analyzed using optical microscopy (OM). The evolution of intermetallic compounds at the joint interface was analyzed using X-ray diffraction (XRD). The microstructure of the joint interface was correlated to the bonding strength of joints.","PeriodicalId":38895,"journal":{"name":"Academic Journal of Manufacturing Engineering","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37255/jme.v17i2pp073-078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this investigation, the effect of holding time on the microstructure of joint interface and bonding strength of vacuum diffusion bonded dissimilar austenitic stainless (ASS) – titanium (Ti) alloy joints were investigated. The dissimilar joints of ASS - Ti alloy were developed using the holding time of 30, 45, 60, 75 and 90 minutes in a vacuum chamber at a temperature of 900⁰C and pressure of 14 MPa. The bonding strength of ASS – Ti alloy joints was evaluated using the ram tensile test. The microhardness survey was done perpendicular to the joint interface. The microstructure of the joint interface was analyzed using optical microscopy (OM). The evolution of intermetallic compounds at the joint interface was analyzed using X-ray diffraction (XRD). The microstructure of the joint interface was correlated to the bonding strength of joints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
保温时间对真空扩散焊异种奥氏体不锈钢-钛合金接头结合强度和界面组织的影响
研究了保温时间对异种奥氏体不锈钢(ASS) -钛(Ti)合金真空扩散连接接头界面显微组织和结合强度的影响。在900⁰C温度和14 MPa压力的真空室中分别保温30、45、60、75和90分钟,制备了不同类型的ASS -钛合金接头。采用滑枕拉伸试验对ASS -钛合金接头的结合强度进行了评价。显微硬度测量垂直于接头界面进行。利用光学显微镜对接头界面的微观组织进行了分析。利用x射线衍射(XRD)分析了接头界面金属间化合物的演化过程。接头界面的微观结构与接头的结合强度有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Academic Journal of Manufacturing Engineering
Academic Journal of Manufacturing Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Investigations On Mechanical Properties Of Micro Particulates (Al2O3/B4C) Reinforced In Aluminium 7075 Matrix Composite Welding Windows for Aluminum-Magnesium and Titanium-Steel Explosive Cladding Tribological Performance Evaluation of TMPTO Based Nano-Lubricants Modeling of Resistance Spot Welding Using FEM Efficiency Enhancement of Heat Transfer Fluids by Using Carbon Dots Nanoparticles Derived From Aloe Vera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1