Jude Zeitouny, W. Lieske, Arash Alimardani Lavasan, Eva Heinz, M. Wichern, T. Wichtmann
{"title":"Impact of New Combined Treatment Method on the Mechanical Properties and Microstructure of MICP-Improved Sand","authors":"Jude Zeitouny, W. Lieske, Arash Alimardani Lavasan, Eva Heinz, M. Wichern, T. Wichtmann","doi":"10.3390/geotechnics3030036","DOIUrl":null,"url":null,"abstract":"Microbially induced calcite precipitation (MICP) is a green bio-inspired soil solidification technique that depends on the ability of urease-producing bacteria to form calcium carbonate that bonds soil grains and, consequently, improves soil mechanical properties. Meanwhile, different treatment methods have been adopted to tackle the key challenges in achieving effective MICP treatment. This paper proposes the combined method as a new MICP treatment approach, aiming to develop the efficiency of MICP treatment methods and simulate naturally cemented soil. This method combines the premixing, percolation, and submerging MICP methods. The strength outcomes of Portland-cemented and MICP-cemented sand using the percolation and combined methods were compared. For Portland-cemented sand, the UCS values varied from 0.6 MPa to 17.2 MPa, corresponding to cementation levels ranging from 5% to 30%. For MICP-cemented sand, the percolation method yielded UCS values ranging from 0.5 to 0.9 MPa, while the combined method achieved 3.7 MPa. The strength obtained by the combined method is around 3.7 times higher than that of the percolation method. The stiffness of bio-cemented samples varied between 20 and 470 MPa, while for Portland-cemented sand, it ranged from 130 to 1200 MPa. In terms of calcium carbonate distribution, the percolation method exhibited higher concentration at the top of the sample, while the combined method exhibited more precipitation at the top and perimeter, with less concentration in the central bottom region, equivalent to 10% of a half section’s area.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"6 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3030036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Microbially induced calcite precipitation (MICP) is a green bio-inspired soil solidification technique that depends on the ability of urease-producing bacteria to form calcium carbonate that bonds soil grains and, consequently, improves soil mechanical properties. Meanwhile, different treatment methods have been adopted to tackle the key challenges in achieving effective MICP treatment. This paper proposes the combined method as a new MICP treatment approach, aiming to develop the efficiency of MICP treatment methods and simulate naturally cemented soil. This method combines the premixing, percolation, and submerging MICP methods. The strength outcomes of Portland-cemented and MICP-cemented sand using the percolation and combined methods were compared. For Portland-cemented sand, the UCS values varied from 0.6 MPa to 17.2 MPa, corresponding to cementation levels ranging from 5% to 30%. For MICP-cemented sand, the percolation method yielded UCS values ranging from 0.5 to 0.9 MPa, while the combined method achieved 3.7 MPa. The strength obtained by the combined method is around 3.7 times higher than that of the percolation method. The stiffness of bio-cemented samples varied between 20 and 470 MPa, while for Portland-cemented sand, it ranged from 130 to 1200 MPa. In terms of calcium carbonate distribution, the percolation method exhibited higher concentration at the top of the sample, while the combined method exhibited more precipitation at the top and perimeter, with less concentration in the central bottom region, equivalent to 10% of a half section’s area.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.