{"title":"Identifying non-thrive trees and predicting wood density from resistograph using temporal convolution network","authors":"Rapeepan Kantavichai, E. Turnblom","doi":"10.1080/21580103.2022.2115561","DOIUrl":null,"url":null,"abstract":"Abstract Deep learning approaches have been adopted in Forestry research including tree classification and inventory prediction. In this study, we proposed an application of a deep learning approach, Temporal Convolution Network, on sequences of radial resistograph profiles to identify non-thrive trees and to predict wood density. Non-destructive resistance drilling measurements on South and West orientations of 274 trees in a 41-year-old Douglas-fir stand in Marion County, Oregon, USA were used as input series. Non-thrive trees were defined based on their changes in social status since establishment. Wood density was derived by X-ray densitometry from cores obtained by increment borers. Data was split for cross validation. Optimal models were fine-tuned with training and validation datasets, then run with test datasets for model evaluation metrics. Results confirmed that the application of the Temporal Convolution Network on resistograph profiles enables non-thrive tree identification with the probability, represented by the area under the Receiver Operator Characteristic curve, equal to 0.823. Temporal Convolution Network for wood density prediction showed a slight improvement in accuracy (RMSE = 18.22) compared to the traditional linear (RMSE = 20.15) and non-linear (RMSE = 20.33) regression methods. We suggest that the use of machine learning algorithms can be a promising methodology for the analysis of sequential data from non-destructive devices.","PeriodicalId":51802,"journal":{"name":"Forest Science and Technology","volume":"63 1","pages":"144 - 149"},"PeriodicalIF":1.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Science and Technology","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1080/21580103.2022.2115561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Deep learning approaches have been adopted in Forestry research including tree classification and inventory prediction. In this study, we proposed an application of a deep learning approach, Temporal Convolution Network, on sequences of radial resistograph profiles to identify non-thrive trees and to predict wood density. Non-destructive resistance drilling measurements on South and West orientations of 274 trees in a 41-year-old Douglas-fir stand in Marion County, Oregon, USA were used as input series. Non-thrive trees were defined based on their changes in social status since establishment. Wood density was derived by X-ray densitometry from cores obtained by increment borers. Data was split for cross validation. Optimal models were fine-tuned with training and validation datasets, then run with test datasets for model evaluation metrics. Results confirmed that the application of the Temporal Convolution Network on resistograph profiles enables non-thrive tree identification with the probability, represented by the area under the Receiver Operator Characteristic curve, equal to 0.823. Temporal Convolution Network for wood density prediction showed a slight improvement in accuracy (RMSE = 18.22) compared to the traditional linear (RMSE = 20.15) and non-linear (RMSE = 20.33) regression methods. We suggest that the use of machine learning algorithms can be a promising methodology for the analysis of sequential data from non-destructive devices.